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Distortion in Linearized Electrooptic Modulators
William B. Bridges, Fellow, IEEE, and

Abstract—Intermodtdation and harmonic distortion are cal-
culated for a simple fiber-optic link with a representative set
of link parameters and a variety of electrooptic modulators:
simple Mach–Zehnder, linearized dual and triple Mach-Zehnder,
simple directional coupler (two operating points), and linearized
directional coupler with one and two dc electrodes. The resulting
dynamic ranges, gains, and noise figures are compared for these
modulators. A new definition of dynamic range is proposed to
accommodate the more complicated variation of intermodula-
tion with input power exhibited by linearized modulators. The
effects of noise bandwidth, preamplifier distortion, and errors in
modulator operating conditions are described.

I. INTRODUCTION

ELECTROOPTIC modulators, both discrete interference
types such as the Mach–Zehnder modulator and dis-

tributed interference types such as the directional-coupler
modulator, have inherently nonlinear transfer curves. As a
consequence, they may limit the dynamic range of the photonic
link in which they are embedded by generating harmonics and
intermodulation products. Various modulator configurations
have been proposed and demonstrated in the last several
years [1]–[8] to address this problem and increase the link
dynamic range. All of these schemes depend on generating
two or more modulation samples with different ratios of signal
to distortion and then combining the samples so that the
distortions cancel (to some order) while the signals do not
cancel. In some cases it is easy to identify where the two
modulations occur and where the combinations take place, as
in the dual Mach–Zehnder schemes [1], [2], [6]; in others it
is not so obvious, such as the directional-coupler modulator

and its variations [3]–[5].
The various linearized modulator schemes predict, and in

some cases have demonstrated [1], [4]–[7], significant reduc-
tion in harmonics and intermodulation products, which should
lead to the realization of photonic links with higher dynamic
ranges. However, in all cases, the cancellation turns out to
be critically dependent upon the modulator device parameters,
so that these parameters will likely have to be controlled by
active means, especially if the distortion cancellation is to be

maintained over ‘a large operatin~ bandwidth. In addition. the
dependence of the harmonic or intermodulation product on
the signal drive level is no longer a simple constant exponent
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Fig. 1, Dual-parallel modulator configured with equal length electrodes and
me input optical signal. This particular approach requires two photodiodes at
the optical receiver. An alternative approach would use two lasers and then
:ombine the optical signals at the modulators’ outputs into one detector.

(e.g., a slope 3 line on the dBOUt versus dB,n graph for third-
order intermodulation), and the photonic link dynamic range
no longer depends on the noise level in a simple way; a clearer
definition of “dynamic range” is really required. Finally, the

improved modulator dynamic range can easily be eroded by

the nonlinear behavior of the electronic amplifiers required by
the photonic link to realize reasonable gain and noise Fig. [9].

This paper uses a simple photonic link model to find the
gain, noise figure, harmonics, intermodulation, and dynamic
range for a number of the modulator schemes listed above.
and it uses the model to optimize the modulator parameters.
The sensitivity of representative Mach–Zehnder modulator
(MZM) and directional coupler modulator (DCM) schemes
to modulator and link parameters are calculated and com-
pared. A refined definition of “dynamic range” is proposed
to eliminate possible ambiguities resulting from the definition

based on simple slopes. Finally, the results of adding electronic
amplifiers to the photonic link are calculated.

II. DUAL MACH–ZEHNDER MODULATORS

The Mach–Zehnder modulator is a simple two-channel
interference device, resulting in a sine-squared dependence of
light output on drive voltage. The modulator is biased to the
most linear portion of the transfer curve, which for a perfect
modulator also assures no even-harmonic generation.

However, the nonlinearity of the transfer curve is respon-
sible for the generation of all odd-harmonics and all possible
intermodulation products. The dual MZM scheme uses two
MZM’S, driven at different RF levels and fed with different op-
tical powers, as illustrated in Fig. 1. The RF and optical power
splitting ratios are chosen so that the modulator receiving the
larger optical power receives the smaller RF drive power. This

modulator may be thought of as the “main” modulator, with
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some distortion created by the finite RF drive power. The other
modulator receives only a little optical power, but is driven

relatively much harder, thus yielding a much more distorted

signal. The two optical outputs are combined incoherently, for

example, by combining the electrical outputs of two separate

detectors as shown in Fig, 1.1 If the bias points of the two
modulators are chosen so that the modulations are out of phase,
and the ratios of both optical and RF powers are properly
chosen, then the sum of the two distortions (PILf ) can exactly
cancel, while the signals (F’s) do not completely cancel. This
exact cancellation can only occur for a specific drive level,
with distortion reappearing at both lower and higher drive
levels.

There are various strategies to determine the optimum ratio

of optical and RF power splits to maximize the dynamic range.

One strategy, first proposed and demonstrated by Johnson
and Rousell [10], was arrived at by expanding the distorted
output signal of each modulator in a Fourier series including
the signal, odd harmonics, and intermoclulation products. The
coefficients in this well-known series are the products of Bessel
functions. If the input signal consists of equal amplitudes at
two frequencies WI and W2. then the coefficient giving the
intermodulation at frequency 2W1–W2 contains the product

of Bessel functions J1 (d) .12(0), where the argument 8 is

proportional to the RF drive voltage. Johnson and Rousell then

approximated this product with the first terms in the power

series expansions of tll (0) and J2 (0), so that the coefficient is
proportional to the RF voltage cubed. To cancel this coefficient
in the summed output of two modulators, they found that the
optical power split ratio should be the inverse cube of the
RF drive voltage split ratio. In their particular experiment, the
RF voltage split was fixed at 1 :3, so that the optical power

split was set to 27 : 1.2 Although this particular condition
cancels the cubic term in the Bessel function expansion, there
remain 5th 7th 9th, . . . power terms in the RF modulation.

Thus, the i~terrnodulation at 2W1–WZis not exactly canceled,

but exhibits a roughly 5t1’ power dependence on P,m. This is
, illustrated in Fig. 2, which shows the intermodulation in a dual

MZM with the inverse cubic relation prescribed by Johnson
and Rousell. (The method of calculation and link parameters
used are discussed in detail in the link model section, and in
the Appendix.) The resulting dynamic range is 126.2 dB for
this particular link, which has its component parameters given
in Table I. An RF voltage split of 2.62 rather than 3 was used

as discussed later.
Alternatively, the intermodulation distortion may be exactly

canceled using a slightly different optical or RF splitting ratio,
but only for a single power level, as illustrated by the null in
Fig. 3. Slight adjustments of the splits move the exact position
of the zero. The slope just to the right of the zero is steeper

]Alternately, a 90° polarization could be added to one output if a single
detector is desired or the two modulators could be driven by two independent
lasers with the receiver, comprised of a single detector.

2Johnson and Ronsell’s “dual MZM” was actually a single MZM on x-
cut LiNb03 with the light polarized before entering the modulator such that
27 times as m“~h optical power Wasin the TM polarization as in the TE

polarization. A single set of electrodes modulate both optical polarizations,
but the TE state is three times as sensitive to the drive voltage, as fixed by
the electrooptic properties of lithium niobate.

! 1 I 1
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Fig. 2. OutputRF signalpower and third-orderintermodulationpoweras a
functionof the input signalpowerfor a fiber-opticlink, with the parameters
in TableI. The dual-parallelmodulatoris arranged for the “optimum” split
so that the small-signal cubic intermodrdation terms caucel, leaving a residual
intermodnlation at 2UJ1+.2 that varies us the fifth power of the input signal
level.

TABLIE I
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than 5, while the ultimate slope to the left of the auxiliary
maximum is 3. Note that it is now possible for the IMD
curve to have three intersections with the noise level line.
We must specify which intersection to use to define “dynamic
range.” There will be no ambiguity if we define the spurious-
free dynamic range as that distance in dB from the signal
to the intermodulation level where the intermodulation level
equals the noise level at the s]nallest input level. With this
definition. we see that the dynamic range will now depend
discontinuously on the noise level. The maximum dynamic
range occurs when the auxiliaty maximum to the left of the
minimum is just below the noise level, and the dynamic range
will drop discontinuously when that maximum increases above
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Fig. 3. Same modulator as Fig. 2 but the splitting ratio is adjusted for
maximum dynamic range, which results in complete cancellation of the
large-signa12ti1+2 intermodulation term atone particular signal level.

the noise level. The maximum dynamic range of this link is
now 129.7 dB, compared to 126.2 dB for the “cubic” condition
in Fig. 2. One important consequence of the more complicated
behavior of the IMD and harmonics is that we must now treat
the whole photonic link rather than analyze just the modulator
to determine the dynamic range, since the dynamic range
depends on the relationship of the noise level to the kinks and
bends in the harmonic and IMD curves. The best adjustment
of the modulator parameters will depend on the actual values
of the other link parameters.

There is an additional degree of freedom in the true dual
MZM. The condition discussed by Johnson and Rousell spec-
ifies the ratio of optical split in terms of the RF split to cancel
the cubic contribution to the intermodulation. But the RF split
ratio can be specified independently if a true dual MZM is
used as in Fig. 1 instead of the two polarization states of a

single modulator, where the equivalent voltage ratio is fixed
at 3. The true optimum in the voltage ratio is about 2.62, but
only one dB in dynamic range is sacrificed in the example
given in Fig. 2 if the ratio is 1.8 or 4.8. However, as shown
later, the dynamic range is very rapidly degraded if the voltage
and optical power are not near the inverse cube relation.

III. LINEARIZED DIRECTIONAL COUPLER MODULATORS

Integrated-optic directional couplers made on electrooptic
substrates can also be used as optical modulators [11], If
the guides are physically identical, then complete transfer of
the optical input from guide 1 to guide 2 is possible in one
coupling length, which is determined by the optical waveguide
dimensions and refractive indices of the guide and substrate.
Modulating electrodes are applied to the two waveguide chan-
nels so that the propagation constants of the guides are changed
incrementally in opposite directions when a voltage is applied.
The differential change in the propagation constants? Afl,

depends upon the electrode configuration and the electrooptic
coefficient of the modulator material. By applying sufficient
voltage, the optical signal may be transfen-ed from guide 2
back to guide 1. The voltage required to do this is termed

o 1 2
V##S or V#Jn

Fig. 4. Transfer curves of simple directional coupler and Mach–Zehnder
modulators from zero voltage to twice the switching voltage applied to the
electrodes.

the transfer voltage (VS), and is analogous to the half-wave

voltage of the MZM. Fig. 4 shows the theoretical modulation
transfer functions for a directional coupler modulator (DCM);

there are two complementary transfer functions Y;R(V) and
Yss (V) since the DCM has two output channels for an input
into one arm. The MZM transfer curve l~f z (V) with a half
wave voltage VT equal to the DCM transfer voltage Vs is also
shown for comparison. The two modulator transfer curves are
very much alike from zero up to one switching voltage, but

beyond that they depart; the MZM is periodic in 2Vm, while
increasing Afl further spoils the transfer from one arm back to

the other. The mathematical form of the DCM transfer function
[12] is

The transfer voltage Vs is defined by

T’(S 4#q2A2

3= 7r2~2n~r2

(1)

(2)

where 1 is the length of the coupling region and K is the
coupling constant. When V = O and d = T/2, the signal is
transfemed completely from one guide to the other. The other
variables in (2) are nO the optical index of refraction for the
guide, r the relevant electrooptic coefficient, g the electrode
gap spacing, ( the overlap integral between the optical and
electrical fields, and ~ the free space optical wavelength. Vs
is usually determined experimentally. Unfortunately, a Fourier
series for the output from a modulator with this transfer
function is not available in closed from. One must use a power
series expansion, as in [3], or input the transfer function with
a two-tone time variation and find the Fourier components
numerically—as in [4] and the present work.

The intermodulation distortion produced by a simple DCM
is usually very much like that of an MZM driven to produce
the same modulation percentage, as pointed out by Halemane
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Fig. 5. Linearized directional coupler modulator with a modulator section
followed by two biased passive sections. The angle /3 is shorthand for K1.

and Korotky [12]. However, there are subtle differences. For

example, biasing to the zero second-harmonic point does not

eliminate higher-order even harmonics. More interesting, a
zero in the third derivative curve, which is primarily responsi-

ble for both third harmonic and 2WI–W2 IMD, occurs where
the signal is not zero, at about 0.7954 Vs. This is unlike the
MZM, where zeros in all odd derivatives occur at the same
value of Vs /2. We shall return to this point later.

Attempts to linearize the transfer function given in (1) by
adding elements to a basic DCM have been made by several

workers [3]–[5]. Farwell et al. [4] have analyzed and built the

configuration illustrated in Fig. 5, a directional coupler that
has three sets of electrodes. The first set is used to apply the

modulation signal plus a dc bias voltage. The second and third

(passive) electrodes have only dc bias voltages applied. The
two “extra” degrees of freedom introduced by these sections
are used to linearize the modulation transfer function.

Before treating the modulator with three electrodes, it is
instructive to look at a simpler modulator, namely a DCM with

only one extra set of bias electrodes as described by Lam and
Tangonan [3]. The reader may think of this as the modulator
of Fig. 5 with VA = VB - VP and 6P = OAl+ 19B[6.4 =

tiJA,6B = dB and thus dp = /$(/A + ZB)]. We can illustrate

the development of a “more linear” region by plotting the

transmission Yss versus the voltage on the first section with
the normalized voltage on the second section Vp/V, as a
parameter. The result is shown in Fig. 6 for the particular
case where both the modulator section and the biased sections
are electrically 7r/2 radians long: that is, fl~f = 6P = 7r/2.
The figures give the modulation transfer curves for –2 <

Vk~/VS <2, or a range of four transfer voltages. Thus, with
zero voltage applied to all sections the optical input on branch

1 is completely transferred to branch 2 in ~~r and then back to

branch 1 in 0<4+OB. If VWr/VS= 1 is applied to the modulator

section with VP/VS = O, the transfer is complete from branch
1 to branch 2. With VP/Vs = O, we would bias the modulator

section to VA[/VS = 0.4394 to obtain the minimum second
harmonic output. We note that with Vp/Vs = 0.7 applied
to the second section, the region about the modulator bias
point V~~/VS x 0.5 begins to look much more linear. As the

voltage is increased further, Vp/VS = 0.8, this added linearity
disappears, and at 17P/17s = 1, the transfer curve is identical to
VP/VS = O, but it is inverted. Further increase in the voltage
applied to the second section continues to change the shape of
the transfer curves but never yields such an improvement in
linearity over VP/VS x O. At Vp/V, = W, the modulation

transfer curve is exactly the same as that at zero voltage, and

‘OEX77
02‘m-m

-2 0 +2

V’#/s

Fig. 6. Evolutionof the transferfunctionof a directionalcouplermodulator
with a passive bias section as the normalizedvoltage V’p / ~‘S is increased
from O to 0.8. Note the “linearized” region on the 0.7 curve.

very little change occurs above that voltage. In the limit of
very high voltage applied to the second section, ~~ becomes
so large that there is little coupling between the two guides,
and the second section effectively becomes two independent
guides (with equal and opposite phase shifts that still depend
on the applied voltage).

It is interesting to look at the shape of the derivatives of

the modulation transfer function as the bias on the second

section is varied. Fig. 7 repeats the transfer function from
O < Vi,I/VS < 1 and adds the first three derivatives with
Vp/VS = O. The first derivative produces most of the signal,
the second derivative produces most of the second harmonic,
and the third derivative produces most of the third harmonic
and the 2W1–W2intermodulation (and a very small amount of
signal), etc. Clearly, biasing for a zero in the second derivative
will nearly maximize the thircl derivative, an undesirable
situation. What we really wish to do to is make the second and
third derivatives simultaneously :zero, and this can be realized
if Vp /VS is changed to 0.73193; the resulting transfer function
and its derivatives are shown in Fig. 8. This condition is near
the “0.7” curve in Fig. 6. By making the second derivative
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Fig. 7 The transfer curve and Its first three derivatives for a directional cou-
pler modulator of electrical length fl.lr = m/2 followed by an identical passive
section ot’ length HP = rrl 2, with normalized bias voltage VP/I> = 0.0.
The proper bias for minimum second harmonic, I jlrll ~ = 0.4.394 is
shown by the arrow. the star indicates a possible bias that would make the
intermodulatlon distortion zero, but would result in a large second harmomc.

just touch the to zero line at its maximum, we make both
second and third derivatives zero simultaneously, assuring that
the second harmonic, third harmonic, and 2W1–W2outputs are
nearly minimized. There will be small remainders at these
frequencies produced by the nonzero higher derivatives, which
may be canceled by a slight adjustment of the second bias
voltage away from 0.73193 VS at a single value of modulation
drive voltage. just as in the dual MZM previously discussed.

We can apply this same strategy to the three section modu-
lator shown in Fig. 5 in order to find optimum values of VA

and VB. Fig. 9 shows the transfer function and its first three
derivatives for the particular case that flNIOD = 7r/2, 19.J =

~B = x/4, V~/lls = 0.73805 and 17B/lzs = 0.77002. For
these values (found by trial and error), second, third, and fourth
derivatives are all zero at a modulator bias of Vkl/Vs = 0.509.
Thus, the fourth harmonic will be greatly reduced, the second
harmonic will be reduced somewhat from the case of the two-
sccdon modulator, and the third harmonic and the 2W1–W2
intermodulation will be of the same order.

It is tempting to speculate that adding further biased sections
will add still more degrees of freedom that could be used
to set additional derivatives to zero and improve the 2W1+2
intermodulation. In a study by Sheehy [19] it appears that the
fifth derivative may be set to zero, not by adding an additional
section, but by moving the second biased section to precede
the modulator, and adding phase-shifting lengths between the
modulator section and the biased sections. Sheehy also shows
that adding further biased electrodes or phase shift sections to
the DCM can do no better than this.

_ll / I

_,o ~
o 1

vf#~

Fig. 8. Same modulator as Fig. 7, but biased to 1>/V~5 = 0.73193 to
simultaneously zero the second and third derivatives.

y ‘R
01 I I

Fig. 9. Transferfunctionandfirstthreederivativesfor the directionalcoupler
modulatorof length 6’i]I= r/’2 followedby two passivesectionsof lengths
0.4 = rr/4, 6B = rr/-t as shown in Fig. 5. The biases V-Aand t’B shown
were found by trial and error to the maximum dynamic range. The optimum
modulator bias M l’]r/1> = 0.509,

IV. LINK MODEL

We now introduce a model for a complete optical link illus-
trated in Fig. 10, containing a laser source with power PL [W],

and a relative intensity noise RIN [dBiHz]. The laser feeds a
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i i i
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Fig. 10. Schematic of the model that was used m the analysis of high fidelity
fiber-optic links. The pre- and post-amplifiers were omitted for most of the
calculations.

traveling-wave modulator, which we will describe in terms of
its transfer function and its characteristic impedance RA,l [Q].
The transfer function will contain a sensitivity characterized

by V. in the case of MZM’s or VS in the case of DCM’S,
along with bias voltages, optical splits, and other parameters
as necessary. The modulator output is attenuated by some loss
Lo [dB], which is the total optical loss in the modulator,
the optical fiber, and optical connections (LM + LF). The
optical detector is characterized by its responsivity q [A/W]

and its terminating load RD [Q] (which would also be the
input impedance of a post amplifier if one were used). The

system noise bandwidth is BW [Hz].
The modulator is driven by an RF power P,. [dBm],

which consists of two equal amplitude sinusoidal modulations
at frequencies 1.0 and 0.9 Hz. This modulation is applied
to the transfer function to calculate the output signal. The
Fourier components at 1, 2; and 1.1 Hz, corresponding to
signal, second harmonic, and intermodulation at 2W1–W2, are
calculated by direct numerical integration over the complete
period for this signal: 1.0/(1 .0–0.9) =10 sec. (The other inter-
modulation product 2WZ– W1at 0.8 Hz has the same amplitude
as that at 1.1 Hz.) We found direct calculation to be much
more satisfactory than taking a numerical FFT, since we are
only interested in certain frequency components rather than a
complete spectrum; calculating only these components allowed
us to program the link model in the user-friendly language
MathCA@’ on personal computers (486 and Macintosh II).
Further details of the calculations are given in the Appendix.

The calculations were made for a consistent set of physical
parameters representative (except for the bandwidth) of a
typical short fiber-optic link used at microwave modulation
frequencies; these are given in Table I. Of the first eight

parameters listed in the table, three always occur in the
model as the product II = PLLOT)D, which is simply the
photodetector current when the modulator transmission is
unity; this product is 7 mA for the values given in the table,
and any other values that give the same product will yield the
same results. The output Fourier components were calculated
for input signal levels from – 160 dBnn to +40 dBm. The
noise level was calculated over this same range and includes
laser RIiV, shot noise due to the photodiode direct current
(assumed to be completely signal-generated; dark current was
assumed to be zero), and thermal noise in the input source
and output terminating resistors.

The loss Lo was taken to be 10 dB, a reasonable value for
the fiber, connector, and excess modulator loss (at zero bias)
in a short link. For long links, LO will be greater, and an

additional noise term accounting for Rayleigh scattering noise
should be added.

In addition to plots of the signal, noise, harmonics, and
intermodulation as functions of input power, the dynamic

range was found by solving numerically for the input RF drive
level at which the intermodulation curve intersects the noise
level using MathCA@’s root finding routine. The dynamic
range was calculated as the difference (in dB) between the
intermodulation and the signal at this power level. Since the
intermodulation curve crossed the noise level multiple times in
some cases, the initial guess for the root finding routine was
always set to low RF drive levels. The link model program

was used in a trial-and-error falshion to adjust the various
biases, splits, etc. on the linearized modulators to maximize
the dynamic range. The maximum dynamic range as we
have defined it above occurs when a subsidiary maximum
in intertnodulation just “kisses” the noise level, as shown
in Fig. 3. Unfortunately, this is just the kind of intersection
for which a root-finding routine will have trouble converging.
When the root finder failed to converge, a highly magnified
plot of the subsidiary maximum and the noise level was

generated to decide if the curves kissed or crossed.
The small-signal gain and noise figure were calculated

numerically by evaluating the signal at a very small input

value, selected typically as P,. = – 100 dBm. Since the
intrinsic links contain no electronic amplification, their “gains”
were actually losses of several tens of dB and their noise
figures were also several tens of dB. Both gain and noise
figure is improved by using higher laser power or developing
a more sensitive modulator, but it is doubtful that either could
be improved sufficiently at microwave frequencies to realize
the greater-than-unity gain and good noise figure reported by

Cox et al. [14] for low frequency modulators with passive
impedance transformations. In almost all applications, elec-
tronic amplification would have to be added to a microwave
link, and this will introduce an additional source of noise and
distortion as discussed later.

V. LINK PERFORMANCERESULTS:
,MACH–ZEHNDER MODULATORS

For reference we consider first a simple MZM biased

proper] y at 0.5VS to eliminate all even harmonics.’ Fig. 11

shows the results with the parameters given in Table I. The

dynamic range is 109.9 dB for a 1 Hz bandwidth, the gain is
–25.2 dB, and the noise figure is 38.0 dB. Since the slope of
the intermodulation is closely 3 in the log–log plot, it would
be easy to define a third order intercept of 3 dBm (output)
or 28.2 dBm (input) for this modulator, and use that value to
calculate the dynamic range DY for any other noise level as

DY = $ (DIL1 – P,,. – B) (dBm) (3)

where DILI is the third-order intercept point in dBm, P,,O is
the noise power in dBm, and B is the bandwidth in (dB)/Hz.
The third harmonic is about 9.5 dB below the intermodulation
for most of the range.

The results for the dual MZM with the optimum RF drive
voltage split of 2.62 : 1 and the “inverse cube” optical split of
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Fig. 11. Signal, intermodulation, and noise for a photonic link (Table I
parameters) using a simple Mach-Zehnder modulator biased at t jU = t; ,/2.
The resulting dynamic range is 109.9 dB, The curve labeled VH’ is the
component at the second harmonic frequency due to the high-order odd
intermodulation products coincidentally at that frequency, since all even order
products are Identically zero. This curve does depend on the numerical choice
of frequencies used.

1:17.9847 were already presented in Fig. 2 for the condition
that cancels the cubic term in the intermodulation and results
in a simple slope 5 curve. The resulting dynamic range is
126.2 dB for a 1 Hz bandwidth, the gain is –36.0 dB, and

the noise figure is 48.8 dB. The gain is lower than the single
MZM because thqre is a partial cancellation of the signal in
the process of canceling the intermodulation. And, since the
noise level is similar (the noise was split in an uncorrelated
fashion between the two detectors) the noise figure is also
degraded. (Note also that if the two-polarization scheme were
used the detector shot noise would have to be treated slightly
differently.)

If either the optical splitting ratio or the RF splitting ratio

is adjusted to be slightly off the exact inverse-cube relation,

then a small improvement in dynamic range is obtained. Fig. 3

shows the result of making the RF split 2.62:1, but the optical

split 1 : 17.9136 versus 1 : 17.9847 for the “inverse cubic”
relationship, determined by trial and error to produce the
maximum dynamic range of 129.7 dB, a 3.5 dB improvement,
with a resulting link gain and a noise figure essentially the
same. The dynamic range depends very critically on the RF
and optical splitting ratios. Fig. 12 shows the sensitivity of
dynamic range to a change in the optical power splitting ratio
01 : 02 (expressed as the difference 01–01, CUBIC) when
the RF voltage is the “inverse cubic” optimum split 2.62 : 1.
The sensitivity to change of the RF power ratio WI : W2
for the “inverse cubic” optimum optical ratio (expressed as
WI–T171,CUBIC) is very similar to Fig. 12. We see that we
can gain an improvement in dynamic range above the simple
inverse-cubic relation for these splits. But the improvement
only comes with very close control of these ratios, a control
that likely could be achieved only with active feedback driven
by the intermodulation distortion or harmonics from a pilot
tone, for example. In fact, to obtain any improvement over a

single MZM, not just the “extra” 3.5 dB, active control will
likely be necessary.
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Fig. 12. Tolerance of the dynamic range of the dual-parallel MZ modulator
to changes in the optical power spht with the RF spht held constant at its
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Fig. 13. Char we in dynamic range from its maximum value versus the
fraction of opt;cal power fed to modulator 1 for a dual Mach–Zehnder
linearization scheme. System noise bandwidth is the parameter from 1 Hz–1
GHz.

The situation is not quite as grim as Fig. 12 implies when
we use more realistic values of system noise bandwidth. The
intersection of the intermodulation curve with the noise level

determines the dynamic range, so that an increased noise level
will change the parameters that yield the maximum dynamic
range and also the sensitivity to deviations in the parameters.
Fig. 12 was calculated for a 1 Hz bandwidth. Fig. 13 shows
the change in dynamic range from its maximum value as a
function of the optical fraction used in modulator 1 (the same
abscissa as Fig. 12, but shifted by 01, CUBIC) with system
noise bandwidth as a parameter from 1 Hz to 1 GHz. If
we measure the “tolerance” to deviations as the width of
these curves at some dynamic range degradation, say –3 dB,
then we find the tolerance varies roughly as (B W) 1/5. A
perturbation analysis by Hayes [20] that neglects the higher
order terms in the intermodulation also predicts a fifth-root
variation. Even for 1 GHz bandwidth, Fig. 13 indicates 1‘%o

control will be required on 01 to stay within +1 dB of a high
dynamic range. It is also true that the higher the noise level,
the smaller the improvement that can be gained by using a
linearized modulator—that is, the ratio of dynamic ranges of
the dual MZ to the single MZ. Hayes’ perturbation analysis
predicts this ratio varies as (13W) ‘Zilb.

As in the simple MZM, the true second harmonic is iden-
tically zero in the dual MZ because of the symmetry of
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Fig. 14. Output RF signal power andthird-order intermodulation poweras
afunction of the input signal power forafiber-optic link using parameters of
Table I and a simple dk-ectional coupler modulator. The “standard’ bias point
of 0.4394VS was used. In this case the 2H curve arises form all orders of
nonlinemity, including even terms.

the sine-squared transfer function. However, the behavior of
the third harmonic in the dual MZM is somewhat more
complicated than in the simple MZM. If plotted in Fig. 3,
the third harmonic curve would lie below the IMD curve for
most of the region to the right of the null in IMD, although by
less than the – 9.5 dB of the simple MZM. For the operating
conditions of Fig. 3, a null occurs just to the left of the IMD
null, so that the third harmonic is actually greater than the IMD
in a very small range of input powers near the value where
both third harmonic and IMD enter the noise level. Thus, if
third harmonic components fall within the frequency range of
interest, the “dynamic range” should be defined by the third

harmonic intersection with the noise, rather than the IMD.

It may have occurred to the reader that one might use three

identical MZM’s and attempt to cancel the 5th order term
in the J1 (0) Jz (0) Bessel expansion as well as the 3rd order

term. This can also be done. The optimum splits for ‘6cubic-
quintic” cancellation, analogous to the “cubic” condition for

the dual MZM are, for RF power, WI : W2 : W3 = 0.0394:

0.3136 : 0.6470 and for optical power, 01 : Oz : Os =

0.914480 :0.074218:0.011302. Using these RF and optical

splits, the intermodulation at 2W14Z exhibits a smooth slope

7 dependence on the input power. The resulting dynamic

range, for the link parameters in Table I, is 132.96 dB, with a

small-signal gain of –41.7 dB and a noise figure of 54.6 dB.
The “second harmonic” at 2w1 (resulting from coincidental
differences between high odd-order terms) is about 2 dB below
the 2w1–w2 intermodulation.

Also analogous to the DMZ, a slightly better dynamic

range may be obtained by operating a little off the exact

“cubic-quintic” condition, for example, with the same ratio
of W1 : W2 : W3 but with (2I : 02 : 03 = 0.914484 :

0.074218:0.011298, we obtain a dynamic range of 134.85
dB. The gain and noise figure are unchanged. The sensitivity
of the splits are similar to those shown in Fig. 12. The three
MZM scheme is likely only of academic interest; the dual
MZM is hard enough to realize in practice!
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Fig. 15. Output RF signal power, third-order interrnodulation power, and
second harmonic power as a function of the input signal power for a fiber-optic
link (Table I parameters) with a simple directional coupler modulator. The bias
point was set to 0.7955071’> for maximum dynamic range. The large second
harmonic arises from the large quadratic curvature of the transfer function at
this bias point.

We conclude that by using a dual MZM and the link
pwameters given in Table I we can obtain about 20 dB of
improvement in dynamic range at a sacrifice of’ about 10 dB
in gain and 10 dB in noise figure, and at a cost of controlling
the modulator parameters precisely.

VI. LINK PERFORMANCERESULTS:
DIRECTIONALCOUPI.ER MODULATORS

We now apply the link model calculations to DCM’s.
Fig. 14 shows the calculated signal, second harmonic, and
intermodulation for a simple DCM with the parameters given
in Table I. The length of the modulator is chosen to give

complete crossover at zero bias. Since there is no bias point
that eliminates all even harmonics simultaneottsly as in the
MZM. we have to choose a compromise bias point. For
Fig. 14. we have chosen the bias point that minimizes the
second harmonic, very near the point that makes the second
derivative of the transfer function zero. The residual second
harmonic then arises from the nonzero higher even derivatives
and shows up as a curve of slope about 4. The signal,

odd harmonics, and 2W1–WZ intermodulation are relatively
insensitive to the exact choice of bias in this range. The third
harmonic is about 9.5 dB below the intermodulation, exactly
like the MZM. For this link the dynamic range is 109.4 dB,
the gain is –24.8 dB and the noise figure is 38.0 dB, very
close to those values for the simple MZM.

We noted previously (in the caption to Fig. ‘7) that there is
another interesting bias possibility in the simple DCM, at about
0.8 Vs. At this bias the third derivative is, zero but the signal is

not (the “star” in Fig. 7). And, of course, the second derivative
is near its maximum value. Fig. 15 shows the resulting signal,
second harmonic and IMD for a bias of 0.79550717s, which
maximizes the dynamic range to 135.4 dB. The gain is –-31.9
dB and the noise figure is 36.7 d13. The second harmonic would
likely be unacceptably large for this link if it fell within the
desired pass band—7 1 dB below the signal where the second
harmonic equals the noise level. This bias point may be of
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interest for narrow band links where only the IMD falls within
the passband.

Next, we consider the DCM followed by a single set of
electrodes of the same length as the modulator as described
by Lam and Tangonan [3]. Both lengths are chosen to produce
complete crossover at zero bias, the same as those used in
Figs. 7 and 8. Adjusting both the modulator bias voltage and

the passive section voltage by trial and error to maximize
the dynamic range produced the signal, second harmonic, and
intermodulation curves shown in Fig. 16. The optimum biases
were 0.3337 19Vs for the modulator and 0.73 152V, for the
de-biased section when operated in the “cross” state, i.e., the
laser input on the R-guide and output on the S-guide. For
these values, the dynamic range was 127.05 dB, the gain was
–3 1.7 dB, the noise figure was 45.9 dB, and the average light
transmission was 64Y0. It is interesting to consider the output
characteristic of the “bar” state, i.e., laser input on the R-guide

and output on the R-guide. The average light transmission on
the R-guide is 36%, which results in lower shot noise. If the
same bias settings are used, however, the signal and IMD
will be exactly the same on this arm, which means that the
IMD “sidelobe” will now protrude above the noise and yield
an inferior dynamic range (about 124 dB) compared to the
cross arm. However, if a very slight adjustment to the bias
is made, e.g.. changing VP/T~ to 0.731552 from 0.731520,
then the IMD sidelobe falls below the noise and the dynamic
range increases to 129.5 dB, the noise figure falls to 42.9

dB, but the gain remains exactly the same. This would be the
prefemed mode of operation and suggests a general theorem:
If the signal and IMD are the same, then the lower the average
light transmission the better will be the link dynamic range and
noise figure. This theorem is also illustrated by comparing the
simple DCM biased at its maximum dynamic range (Fig. 15).
The noise figure of the simple DCM is actually better by

6–9 dB, and the dynamic range is about 5–8 dB better than
the DCM plus one bias section. This results from a still
lower average light transmission of the simple DCM at the
0.79Vs bias point, about 7% compared to 64 or 36% for the
DCM plus secondary section at its optimum bias. The largest
contribution to the noise in all three situations is signal shot
noise, so minimizing the average light transmission actually
helps the noise-dependent link parameters. (Such a strategy
was proposed and demonstrated for a simple Mach–Zehnder
modulator by Ackerman et al. [21] to increase dynamic range

and noise figure by biasing near extinction. Of course, a very
large second harmonic results there, too.)

The signal at 2W1 in the DCM plus one dc section from
all intermodulation and harmonic terms is greatly improved
from the simple DCM biased for maximum dynamic range,
Fig. 15, but not as small as that in the simple DCM at its
usual bias point, Fig. 14. The second harmonic curve for this
modulator could undoubtedly be improved still further if a
better “optimization” algorithm had been employed for the
second harmonic, as described in the Appendix. Instead, only
the value of the second harmonic at the specific input power
that made the IMD equal to the noise was used as a measure.
While that measure is very low (more than 130 dB below the
signal), the satellite “bump” in 2H at lower inputs was missed.
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Fig. 16. Output RF signal power, third-order intermodnlation power, and
second harmonic power as a function of input signal power for a fiber-optic
link using the parameters of Table I and a directional coupler modulator
with a modulation section of length O.If = rr/ 2 followed by a dc bias
section of length F?P = rri 2. The bias values t-if = 0.3401’~ and V“P =
0.7324171’~ were determined by trial and error to maximize the dynamic
range and minimize the second harmonic at the specific input where the IMD
equaled the noise level. The second harmonic could be improved with a better
optimization algorithm; see the AppendIx.

Thus a broadband (greater than an octave) dynamic range
for this modulator would be 105 dB, limited by the second

harmonic. By relocating the null in the second harmonic using

the dynamic range algorithm described in the Appendix we

believe the broadband dynamic range could be increased to
127 dB.

Finally, consider the DCM followed by two sets of elec-
trodes, as shown in Fig. 5 and studied by Farwell et al. [4].
The modulator is one transfer length long at zero bias as above.

but the two de-biased sections are each half that length. Thus,
if the biases applied to the two sections were forced to be

equal, this modulator reduces exactly to the previous case.
However, allowing the two regions to be biased separately

allows a substantially larger linear range, as shown in Fig. 9.
Starting with the values scaled from Fig. 9, ~NI, VA, and VB

were varied by trial-and-error to find the maximum dynamic
range and a second harmonic that was everywhere less than
the 2W142 IMD. The results for the optimum values are
shown in Fig. 17. For this graph, the optimum values were

0.509VS modulator bias, 0,738045VS second section bias. and

0.770017Vs third section bias. For these values. the dynamic
range is 129.4 dB, the gain is –30.5 dB, and the noise figure
is 43.3 dB, compared to the best DMZ values of 129.7 dB,
–36.0 dB, and 48.8 dB, respectively. Again, the slightly poorer
dynamic range and noise figure compared to the simple DCM
at 0.79VS bias (Fig. 15) result from the much higher average
light transmission (49.8%) and resulting higher shot noise.
Since the light transmission is so close to st)~., both “cross”
and “bar” state operation will be the same.

The second harmonic lies significantly below the IMD, and
exhibits two nulls, as shown in Fig. 17. The third harmonic
curve (not shown) lies below the IMD curve by about 5 dB
over almost the entire range to the right of the IMD null, but
remains slightly above the noise level at the IMD null, since
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Fig. 17. Output signal, intermodulatlon and second harmonic for a dn-ec-
tional coupler modulator with two passive bias sections each one-half the
length of themodulator. Bias points of~j\~ =0.509 t’~,1~ =0.738045~_s,
and J-B = 0.7700171> were found to be optimum by trial and error.

140

130

110

100 ~loo

0.45 0.50 0.55

v~ I v*

Fig. 18. Dynamic range (left scale) and signal-to-second harmonic ratio at
theinput power where the 2L01-u,2 intermodulation intersects the noise level
(right scale) as a function of modulator bias point foraphotonic link with
parameters gwen in Table I and a linearized directional coupler modulator
with two passive bias sections at 1’A = 0.770017 VS.

the third harmonic null lies just to the left of the IMD null.
This issimilar to the situation forthedual MZM.

It is important to consider the sensitivity of the above
results to the errors in the three bias settings, analogous to
errors in optical and ‘RF power splits for the dual MZM.
Fig. 18 shows the sensitivity of the IMD and a measure of
the second harmonic (see Appendix for definition) and IMD
to the modulator bias setting; not surprisingly, the results are
relatively insensitive to this bias, since what we have set out to
do is make a linear curve for the modulator transfer function.
Errors of a few percent in setting the modulator section bias
would not change the modulator performance significantly. By
contrast, Fig. 19 shows the sensitivity of the second harmonic
and IMD to variation in the second section bias. Here, changes
of +0.01% would reduce the dynamic range by 5 dB. Of
course, Fig. 19 is for a 1 Hz bandwidth, and we expect a
similar decrease in sensitivity by BW1/5. Thus we would
expect +0. 16% for 1 MHz and +0.6’%0for 1 GHz bandwidths,
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Fig. 20. Locus of the maximum dynamic range (“cliff’) for the DCM of
Figs. 17–19. Also shown are the minimum second and third harmonic null
loci in the t 4 – t’B plane for an applied pilot tone of –4 dBm.

although we have not made the ca~lculations. The variation with
third section bias voltage V~ /VS is very similar to Fig. 19.

Fig. 20 plots the position of the “cliff’ or discontinuity in
dynamic range as a function of tlhe two biases. Pairs of biases
along the “cliff’ line will all produce dynamic ranges of the
order of 129.4 dB, while east-west motion will produce the
curve of Fig. 19. Also shown in this figure are the loci of biases
that will produce a null in second and third harmonics for an

applied pilot tone power of –4 d Bm. At the intersection of the
second and third harmonic null loci (open circle), the dynamic
range is 129.0 dB, only 0.4 dB less than the optimum value

of the edge of the “cliff.” Thus only a little dynamic mnge
would be lost in an acti~e bia, stabilization scheme based
on nulling the second and third harmonics of a pilot tone, as
suggested by Hayes [15]. The pilot tone amplitude also needs
to be stabilized since the third harmonic curve moves relative
to the “cliff’ as the amplitude varies. A pilot tone of –6 dBm
moves the third harmonic null curve farther to the right, thus
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selecting an operating point still in the “highlands,” but with a
smaller dynamic range; a pilot tone of O dBm moves the third
harmonic null curve to the left, into the “lowlands,” selecting
an operating point with several dB smaller dynamic range,
Of course, this stability requirement should be relaxed with

system noise bandwidths greater than 1 Hz.

VII. LINK PERFORMANCE WITH A PREAMPLIFIER

We have addressed tile effects of electronic amplifiers on
optical link performance in a previous paper [9], an extension
of still older work for cascaded electronic amplifiers [16].
Clearly, the intrinsic optical links (i.e., without electronic pre-
or post-amplification) described above will require the addition
of electronic amplifiers to produce acceptable overall link
gain and noise figure. And the distortions produced in such
amplifiers will add to those produced in the modulator. We
also modified our numerical programs to include preamplifiers
with given small-signal gain, noise figure, third-order intercept
(TOI), and second-order intercept (S01). Gain saturation in
the preamplifier is ignored. The IMD and 2H outputs of the
preamplifier are calculated and then passed through the mod-

ulator using the numerically calculated slope of the transfer
curve. The preamplifier distortion and modulator distortion are
added in quadrature at the photodetector, since they arise from
physically independent sources and are thus uncorrelated,

We can illustrate the effect of adding a preamplifier to a
linearized DCM, one with two added bias sections as described
in Figs. 17–20. We chose a range of preamplifier parameters
that encompass those of the best obtainable microwave ampli-
fiers, but also include values that are better than realizable
at the present. Fig. 21 shows how the dynamic range and
noise figure of the intrinsic link are changed as a function
of preamplifier gain from 0–50 dB. The preamplifier noise
figure is 3 dB and its third-order intercept varies from 40
dBm (off-the-shelf item) to 60 dBm. As expected from the
Friis formula [17], for amplifier gains of the order of the link
loss, the overall noise figure approaches the preamplifier noise
figure. The link dynamic range, however, depends little on the
preamplifier gain up to 30-40 dB, but depends critically on the
TOI of the preamplifier. A preamplifier TOI greater than 60
dBm would be required to keep the link dynamic range from
degrading by 3 dB. At gains in the 40–50 dB range, further

degradation in dynamic range takes place as the modulator
begins to contribute to the distortion. The conclusion here, as
it was in [9], is that it makes no sense to use a highly linearized
modulator unless the driving preamplifier has a high TOI.

Similarly, distortion introduced by the nonideal behavior of
the optical detector could be included in the overall link behav-
ior. The high optical powers encountered in short microwave
links likely will produce such nonideal behavior. Both the
very smal 1area photodetectors that are required for microwave
output and the dependence of the link gain and noise figure
on the laser power yield designs with high optical power
densities on the photodetector. Hayes and Persechini [18]
have measured the distortion produced in typical microwave

photodetectors, and it is significant enough that degrades the
link dynamic range even further.
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Fig. 21. Dynamic range and noise figure for an optical link with a preamph-
fier as a function of preamplifier gain with preamplifier third-order intercept as
a parameter. The modulator is the DCM with two added bias regions, Figs. 5
and 17–20, and the preamplifier noise figure is 3 dB.

VIII. CONCLUSION

We have developed a simple link model that calculates har-
monic and intermodulation distortion by Fourier-analyzing the

link output when a two-tone input signal is applied. We have
applied the model to selected linearized modulator schemes,

particularly the dual and triple Mach–Zehnder, and directional

coupler modulators with zero, one or two additional de-biased
regions to enhance linearity. We find that the harmonics and
intermodulation produced no longer exhibit a simple constant-
exponent power law behavior with the input signal, and we
propose a new, unambiguous definition of dynamic range
to cope with this added complexity. For a sample set of
parameters, we calculate that improvements of about 20 dB
in dynamic range are obtainable, at a sacrifice of 10 dB in

gain and noise figure, but that the modulator parameters must
be tightly controlled to realize such an improvement. Table II
summarizes the link performances for a 1 Hz noise bandwidth.
We also demonstrate that the addition of low noise electronic
amplifiers with even the best obtainable third-order intercepts
will significantly degrade the dynamic range.

APPENDIX

A. Link Model Calculations

The MathCA@ program inputs the link parameters listed
in Table I plus the parameters that enter into the particular
modulator transfer function Y(V), described later in this
appendix. The transfer function, gives the fractional optical
transmission through the modulator when a normalized voltage
V/Vs or V/VT) is applied (I% is the DCM transfer voltage and
V. is the MZM half-wave voltage). The independent variable
used in the link model is the input power Pi. (dBm). This
value in dBm is converted to power in Watts, S,n (Pin).

The normalized voltage applied to the modulator is then
given by

VAI
V(t,Pt.) = ~ + J2R~,1Sin(Pz. )

v
.x(t) (A-1)

5>7r 3,7r
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TABLE II
PERFORMANCE OF FIBER-OPTIC LINKS WITH PARAMETERSOF TABLE I

Modulator Type Dymunic Raoge Gain NoiM Figure

(dB in 1 Hz) (dB) (dB)

simple MZM 109.9 -25.2 38.0

Dud MZM (“cubic”) 126.2 -36.0 48.8

Dual MzM (optimum) 129.7 -36.0 48.8

Triple MZM (“cubicquintic”) ,132.96 -41.7 54.6

Triple MZb’1((lptimllln) 134.85 -41.7 54.6

Siiple DCM (normal bias) 109.4 -24.8 38.0

Simple DCM (max DY bias) 135.4” -31.9 36.7

DCM+Op (cross) 127.05 -31.7 45.9

DCM+9p (bar) 129.47 -31.7 42.9

DC!M+OA-MIB ‘ 129.4 -30.5 43.3

*Dynamic range based on second harmonic only is 82 dB @ 1 HZ)

where Vhf is the bias voltage, R~~ is the modulator char-

acteristic impedance, and x(t) is the (dimensionless) applied

two-tone signal at frequencies a and b

z(t) = sin (27rat) + sin (2~bt). (A-2)

In all calculations a and b are taken as 1 and 0.9 Hz,
respectively, so the intermodulation products 2a – b and 2b– a
occur at 1.1 and 0.8 Hz, respectively. We calculate Only the
former. Second and third harmonics are taken as 2a = 2 Hz

and 3a = 3 Hz. The results are, of course, independent of the
absolute frequency value except for the chance coincidence
in high order intermodulation products that happen to fall at
critical frequencies, e.g., 1la – 10b = 2 Hz.

The waveform as distorted by the modulator transmission
function Y(V) is then obtained from Y[V(t, P~~)]. To avoid

“saturating” the Fourier transform integrals numerically, the dc
component of transmission, Y [Vfir/Vs, n], is subtracted from

Y to yield the time-varying component Y(t, P,.).
The Fourier components of this RF waveform are then

calculated directly using MathCA@”s numerical integration
routine. The integrands are scaled inversely with the input
voltage by multiplying by [S,~ (P,n )] – 112, again, to keep the
integrands from becoming too small and suffering from round-
off errors. In some cases additional fixed scaling factors were
used over different ranges of P,n to speed computation time
in evaluating these integrals3

In addition, it is necessary to calculate both in-phase and

quadrature components of each quantity to account for possible
phase shifts introduced by the transfer function. Thus, the

3It would likely be better to use differeut scale factors for IMD aud second

‘3/2 for IMD and S,nharmonic, say S, ~ – 1 for second harmonic. However, in
the linearized modulators, the dependence on input power is not so simple, and
it was not immediately obvious how to choose the proper integrand scaling
in advance.

signal component is given by

SIG(&) = [Sin (&)]1t2

{[/

2

To
T [sin(Ptn)]-’/2

1
2

. ?(i$, pin) sin (27rat) dt

[/
+$ T [s,n(P,n)]-’/’

o
2 1/2

1}.Y(t,P,n) eels(27rat) dt . (A-3)

The integrals are taken over an exact period T of the input
waveform, T = l/(b – a,) = 10 sec. for a = 1 Hz and

b = 0.9 Hz. The third-order intermodulation IMD(P~m ) is
calculated in the same fashion by substituting 2a – b for a in

equation (A-5), and the second and third harmonic 2H(P,~)
and 311(P, ~) by substituting (2a) and (3a), respectively.
These quantities are actually the Fourier components of the
time-varying modulator transmission. They ,are converted to
detector current by multiplying by the unity transmission
detector current H = PLLOqD, where PL is the laser power in
Watts, Lo is the total optical insertion loss ratio from the laser
to the detector, and qD is the detector responsivity (AAV).
Signal, intermodulation, and harmonics are further converted
to average RF powers in dBm at the output resistor RD of the
intrinsic link: PSIG dBm (Pi.), PIMD dBm (Pi.), P2H
dBm (P,.), and P3H dBm (P,n).

The small signal gain of the link, G, is obtained by
evaluating the output at a very small value of input power.
P,n = – 100 dBm. For the intrinsic link, G is typically
much less than unity, say 10–3–110– A. The noise output power
[W/Hz- l] in RD is given by

N = GkT + RIN I~CRLj + 2eIDCRD + kT (A-4)
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where RIN is the relative intensity noise of the laser (ex-
pressed as a ratio), and IDC is the average photocurrent
H . Y[l\I/~~, T]. Note that both the thermal noise GkT
from the modulator driving source (assumed to be matched to

R.AI) and kT from the detector terminating resistor RD are
included even though the former is negligible compared to the
latter for typical G’s less than unity. The noise figure is then
F dBm = N dBm – [GkT] dBm. If a post amplifier is added,
the kT from RD should be deleted before calculating the link
noise figure so that it may be correctly cascaded with the post
amplifier via the Friis formula [18].

The link dynamic range is calculated by first finding X,n,
the particular value of input power P,. that makes the inter-
modulation equal to the noise. MathCA@’s rootfinder is used

to solve the equation I’lM dBm (P,n ) – N dBm = O for the
root X,m. The dynamic range in dB is then DY = PSIG dBm

(X,n) –IV dBm. When MathCA@’s root-finding program has
difficulty converging, which usually happens when the solution
is near the “kissing” point of a subsidiary maximum with the
noise level, then a program that plots both intermodulation and
noise is used to find the desired solution by successive trials.

A measure of the signal-to-second harmonic ratio, DY2. is
found by evaluating this ratio at Xi.; DY2 = PSIG dBm
(X,.) – P2H dBm (X,.). Depending on the complexity of
the PIM dBm and P2H dBm curves, DY2 can be used
to estimate whether the second harmonic is significant or not
compared to the IMD. But note that the measure DY2 is not a
true dynamic range for the second harmonic. Such a true value
would be found by solving the equation P2H dBm (P,n) – N
dBm = O for the lowest-valued root in input power, X2in,
and then evaluating TrueDY2 = F’SIG dBm (X2,.) – P2H
dBm (X2in ). The true broadband dynamic range would then

be determined by the smaller of D1’” and TrueDY2 (assuming
that the t;zirdharmonic is always less than IMD). We did not

use this procedure in optimizing the modulator parameters,
and Fig. 16 is an unfortunate less-than-optimum result as a
consequence of looking only at DY2 and not TrueDY”2.

B. Transfer Functions

For the Mach–Zehnder modulator, the transfer function is
simply

‘“(v)= [sin(:)]’(A-5)

where V is the voltage normalized to V;, as in (A-2).
For the dual MZM, the additional parameters required are

the lossless RF power splitting ratio F : (1– F), the lossless
optical power splitting ratio ,f : ( 1 – ~), and the two modulator
bias voltages 1V~l and 2VkI (denoting the two modulators by
pre-superscript “ 1“ and “2”). The RF and optical powers fed
to the two modulators are thus

lsln(PLn) = Fs;n(Pin) (A-6)

2Sin(Pzn) =(1 – F) S,n(P,n) (A-7)

lH =,fH (A-8)

2H = (1 – .f)H. (A-9)

The transfer function is thus

{[

1vhf ~2Rfi1S,. (P,.)
Y(V) =f sin2 7r ~+o.

T v. 1}
{[

2vAf
+ (1 – .f) sin2 7r ~+~~

7r

(A-1O)

To obtain cancellation of intermodulation and odd harmonics,

the two modulators must be biased to opposite slopes. In all

calculations, we took 1VA4/Vr = 1/2 and 2VM/Vn = – 1/2.

The simple directional coupler modulator is usually defined

by its physical length 1, coupling coefficient ~, and the

difference in the propagation coefficients of the two arms, A/.?.

We chose to express these as the coupling angle 6’A,I= d

and the transfer voltage VS, that is, the voltage applied to the

electrodes that causes the full output to switch from one arm
to the other arm when d~l is n7r/2 (n an integer). Thus a
DCM with OfiI = 7r/2 and an optical input into arm R only

would have an optical output only from arm S at zero applied

voltage, and output only from arm R with VS applied. The

transfer function for arm R to arm S is then

(A-n)

where V is the applied voltage normalized to VS. We have

assumed the two arms are identical, so that A/3 = O with zero

applied voltage; the formula is easily modified to include a

static A#. The transfer function from input to output in arm
R is Y~~(V) = 1 – Y&(V) and Y~R = I’Rs, YSS = YRR.

The transfer function for the DCM with additional sets of

electrodes is somewhat more complicated to define. We must

work with optical amplitudes rather than powers, since we

must keep track of the modulation phase as the signals pass

from section to section. It is convenient to consider the transfer

matrix from input arms R and S to output arms R and S

M=
(

MRR ‘j~fES

)–jM;R M;~ “
(A- 12)

Note that there are only two independent elements

A!lRR = MSS

and

MRS = iWSR

We note that YRS(V) is simply MEsM~S in (A-28).
If additional passive sections of length 64 and 6B Me added,

with normalized bias voltage VA and V~, then they can be

described by additional matrices A,B with elements Aij, Bij,

obtained by appropriate substitutions in (A-30 )–(A-32). The

overall amplitude transmission matrix T may be obtained by
matrix multiplication, T = BAM. with elements TLj. The
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crossover amplitude is found to be

TR~(v) = –j{BA~[ARRMRR(V) – ARS~&S(V)l

+~fiR[A&~~RR(V) +A&R~fiS(V)]} (-4-15)

and the desired optical intensity transfer functions is then
YRs (V) = TRs (V)TfiS (V). If only one passive section is
used, set VA = VB = VP and 6A = @E = OP/2. And, of
course, the simple DCM is obtained with 8A = 6B = O, albeit
with a longer-running program.
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