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Distortion in Linearized Electrooptic Modulators

William B. Bridges, Fellow, IEEE, and James H. Schaffner, Member, IEEE

Abstract— Intermodulation and harmonic distortion are cal-
culated for a simple fiber-optic link with a representative set
of link parameters and a variety of electrooptic modulators:
simple Mach-Zehnder, linearized dual and triple Mach~Zehnder,
simple directional coupler (two operating points), and linearized
directional coupler with one and two dc electrodes. The resulting
dynamic ranges, gains, and noise figures are compared for these
modulators. A new definition of dynamic range is proposed to
accommodate the more complicated variation of intermodula-
tion with input power exhibited by linearized modulators. The
effects of noise bandwidth, preamplifier distortion, and errors in
modulator operating conditions are described.

I. INTRODUCTION

LECTROOPTIC modulators, both discrete interference

types such as the Mach~Zehnder modulator and dis-
tributed interference types such as the directional-coupler
modulator, have inherently nonlinear transfer curves. As a
consequence, they may limit the dynamic range of the photonic
link in which they are embedded by generating harmonics and
intermodulation products. Various modulator configurations
have been proposed and demonstrated in the last several
years [1]-[8] to address this problem and increase the link
dynamic range. All of these schemes depend on generating
two or more modulation samples with different ratios of signal
to distortion and then combining the samples so that the
distortions cancel (to some order) while the signals do not
cancel. In some cases it is easy to identify where the two
modulations occur and where the combinations take place, as
in the dual Mach—Zehnder schemes [1], [2], [6]: in others it
is not so obvious, such as the directional-coupler modulator
and its variations [3]-[5].

The various linearized modulator schemes predict, and in
some cases have demonstrated [1], [4]-[7], significant reduc-
tion in harmonics and intermodulation products, which should
lead to the realization of photonic links with higher dynamic
ranges. However, in all cases, the cancellation turns out to
be critically dependent upon the modulator device parameters,
so that these parameters will likely have to be controlled by
active means, especially if the distortion cancellation is to be
maintained over a large operating bandwidth. In addition, the
dependence of the harmonic or intermodulation product on
the signal drive level is no longer a simple constant exponent
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Fig. 1. Dual-parallel modulator configured with equal length electrodes and
one nput optical signal. This particular approach requires two photodiodes at
the optical receiver. An alternative approach would use two lasers and then
combine the optical signals at the modulators™ outputs into one detector.

(e.g.. a slope 3 line on the dB,,; versus dB,,, graph for third-
order intermodulation), and the photonic link dynamic range
no longer depends on the noise level in a simple way; a clearer
definition of “dynamic range” is really required. Finally, the
improved modulator dynamic range can easily be eroded by
the nonlinear behavior of the electronic amplifiers required by
the photonic link to realize reasonable gain and noise Fig. [9].

This paper uses a simple photonic link model to find the
gain, noise figure, harmonics, intermodulation, and dynamic
range for a number of the modulator schemes listed above,
and it uses the model to optimize the modulator parameters.
The sensitivity of representative Mach—Zehnder modulator
(MZM) and directional coupler modulator (DCM) schemes
to modulator and link parameters are calculated and com-
pared. A refined definition of “‘dynamic range” is proposed
to eliminate possible ambiguities resulting from the definition
based on simple slopes. Finally, the results of adding electronic
amplifiers to the photonic link are calculated.

II. DUAL MACH-ZEHNDER MODULATORS

The Mach—Zehnder modulator is a simple two-channel
interference device, resulting in a sine-squared dependence of
light output on drive voltage. The modulator is biased to the
most linear portion of the transfer curve, which for a perfect
modulator also assures no even-harmonic generation.

However, the nonlinearity of the transfer curve is respon-
sible for the generation of all odd-harmonics and all possible
intermodulation products. The dual MZM scheme uses two
MZM's, driven at different RF levels and fed with different op-
tical powers, as illustrated in Fig. 1. The RF and optical power
splitting ratios are chosen so that the modulator receiving the
larger optical power receives the smaller RF drive power. This
modulator may be thought of as the “main” modulator, with
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some distortion created by the finite RF drive power. The other
modulator receives only a little optical power, but is driven
relatively much harder, thus yielding a much more distorted
signal. The two optical outputs are combined incoherently, for
example, by combining the electrical outputs of two separate
detectors as shown in Fig. 1.! If the bias points of the two
modulators are chosen so that the modulations are out of phase,
and the ratios of both optical and RF powers are properly
chosen, then the sum of the two distortions. (Pyjs) can exactly
cancel, while the signals (Pg) do not completely cancel. This
exact cancellation can only occur for a specific drive level,
with distortion reappearing at both lower and higher drive
levels.

There are various strategies to determine the optimum ratio
of optical and RF power splits to maximize the dynamic range.
One strategy, first proposed and demonstrated by Johnson
and Rousell [10], was arrived at by expanding the distorted
output signal of each modulator in a Fourier series including
the signal, odd harmonics, and intermodulation products. The
coefficients in this well-known series are the products of Bessel
functions. If the input signal consists of equal amplitudes at
two frequencies wy and wo, then the coefficient giving the
intermodulation at frequency 2w;—ws contains the product
of Bessel functions J;(#).J>(#), where the argument 6 is
proportional to the RF drive voltage. Johnson and Rousell then
approximated this product with the first terms in the power
series expansions of J1(#) and J2(#), so that the coefficient is
proportional to the RF voltage cubed. To cancel this coefficient
in the summed output of two modulators, they found that the
optical power split ratio should be the inverse cube of the
RF drive voltage split ratio. In their particular experiment, the
RF voltage split was fixed at 1 : 3, so that the optical power
split was set to 27 : 1.2 Although this particular condition
cancels the cubic term in the Bessel function expansion, there
remain 5P 7th 9th ... power terms in the RF modulation.
Thus, the intermodulation at 2wq—ws is not exactly canceled,
but exhibits a roughly 5" power dependence on P,,. This is

, illustrated in Fig. 2, which shows the intermodulation in a dual
MZM with the inverse cubic relation prescribed by Johnson
and Rousell. (The method of calculation and link parameters
used are discussed in detail in the link model section, and in
the Appendix.) The resulting dynamic range is 126.2 dB for
this particular link, which has its component parameters given
in Table I. An RF voltage split of 2.62 rather than 3 was used
as discussed later.

Alternatively, the intermodulation distortion may be exactly
canceled using a slightly different optical or RF splitting ratio,
but only for a single power level, as illustrated by the null in
Fig. 3. Slight adjustments of the splits move the exact position
of the zero. The slope just to the right of the zero is steeper

! Alternately, a 90° polarization could be added to one output if a single
detector is desired or the two modulators could be driven by two independent
lasers with the receiver, comprised of a single detector.

2 Johnson and Rousell’s “dual MZM” was actually a single MZM on x-
cut LiNbO3 with the light polarized before entering the modulator such that
27 times as much optical power was in the TM polarization as in the TE
polarization. A single set of electrodes modulate both optical polarizations,
but the TE state is three times as sensitive to the drive voltage, as fixed by
the electrooptic properties of lithium niobate.
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Fig. 2. Output RF signal power and third-order intermodulation power as a
function of the input signal power for a fiber-optic link, with the parameters
in Table I. The dual-parallel modulator is arranged for the “optimum” split
so that the small-signal cubic intermodulation terms cancel, leaving a residual
intermodulation at 2wi—ws that varies as the fifth power of the input signal
level.

TABLE I
FiBErR-OpTIC LINK COMMON PARAMETERS

Laser Power PL 0.1 w
Laser Noise RIN 7165 dB
Total Optical Loss Lo -10.0 JB
Modulator Sensitivity Vg or Vg 10 \'
Modulator Impedance Rym 50 Q
Detector Responsivity D 0.7 AW
Detector Load Rp 50 [0}
Noise Bandwidth BW 1 Hz
Combination PLLonD 7 mA

‘than 5, while the ultimate slope to the left of the auxiliary

maximum is 3. Note that it is now possible for the IMD
curve to have rhree intersections with the noise level line.
We must specify which intersection to use to define “dynamic
range.” There will be no ambiguity if we define the spurious-
free dynamic range as that distance in dB from the signal
to the intermodulation level where the intermodulation level
equals the noise level ar the sinallest input level. With this
definition, we see that the dynamic range will now depend
discontinuously on the noise level. The maximum dynamic
range occurs when the auxiliary maximum to the left of the
minimum is just below the noise level, and the dynamic range
will drop discontinuously when that maximum increases above
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Fig. 3. Same modulator as Fig. 2 but the splitting ratio is adjusted for

maximum dynamic range, which results in complete cancellation of the
large-signal 2w;-—wso intermodulation term at one particular signal level.

the noise level. The maximum dynamic range of this link is
now 129.7 dB, compared to 126.2 dB for the “cubic” condition
in Fig. 2. One important consequence of the more complicated
behavior of the IMD and harmonics is that we must now treat
the whole photonic link rather than analyze just the modulator
to determine the dynamic range, since the dynamic range
depends on the relationship of the noise level to the kinks and
bends in the harmonic and IMD curves. The best adjustment
of the modulator parameters will depend on the actual values
of the other link parameters.

There is an additional degree of freedom in the true dual
MZM. The condition discussed by Johnson and Rousell spec-
ifies the ratio of optical split in terms of the RF split to cancel
the cubic contribution to the intermodulation. But the RF split
ratio can be specified independently if a true dual MZM is
used as in Fig. 1 instead of the two polarization states of a
single modulator, where the equivalent voltage ratio is fixed
at 3. The true optimum in the voltage ratio is about 2.62, but
only one dB in dynamic range is sacrificed in the example
given in Fig. 2 if the ratio is 1.8 or 4.8. However, as shown
later, the dynamic range is very rapidly degraded if the voltage
and optical power are not near the inverse cube relation.

- III. LINEARIZED DIRECTIONAL COUPLER MODULATORS

Integrated-optic directional couplers made on electrooptic
substrates can also be used as optical modulators [11]. If
the guides are physically identical, then complete transfer of
the optical input from guide 1 to guide 2 is possible in one
coupling length, which is determined by the optical waveguide
dimensions and refractive indices of the guide and substrate.
Modulating electrodes are applied to the two waveguide chan-
nels so that the propagation constants of the guides are changed
incrementally in opposite directions when a voltage is applied.
The differential change in the propagation constants, Af,
depends upon the electrode configuration and the electrooptic
coefficient of the modulator material. By applying sufficient
voltage, the optical signal may be transferred from guide 2
back to guide 1. The voltage required to do this is termed
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Fig. 4. Transfer curves of simple directional coupler and Mach-Zehnder
modulators from zero voltage to twice the switching voltage applied to the
electrodes.

the transfer voltage (Vs), and is analogous to the half-wave
voltage of the MZM. Fig. 4 shows the theoretical modulation
transfer functions for a directional coupler modulator (DCM);
there are two complementary transfer functions Ysg(V') and
Yss(V) since the DCM has two output channels for an input
into one arm. The MZM transfer curve Yrz(V) with a half
wave voltage V. equal to the DCM transfer voltage Vs is also
shown for comparison. The two modulator transfer curves are
very much alike from zero up to one switching voltage, but
beyond that they depart; the MZM is periodic in 2V, while
increasing A further spoils the transfer from one arm back to
the other. The mathematical form of the DCM transfer function

[12] is
2
sin? | wt 1+3<VKS>

%
1 -
+3(5;)

The transfer voltage Vs is defined by

Ysr(V) = (1

Vg 4r2g%)\2
EXE 72(2nbr2 2)

where [ is the length of the coupling region and x is the
coupling constant. When V' = 0 and x{ = x/2, the signal is
transferred completely from one guide to the other. The other
variables in (2) are n, the optical index of refraction for the
guide, r the relevant electrooptic coefficient, g the electrode
gap spacing, ¢ the overlap integral between the optical and
electrical fields, and A the free space optical wavelength. Vg
is usually determined experimentally. Unfortunately, a Fourier
series for the output from a modulator with this transfer
function is not available in closed from. One must use a power
series expansion, as in [3], or input the transfer function with
a two-tone time variation and find the Fourier components
numerically—as in [4] and the present work.

The intermodulation distortion produced by a simple DCM
is usually very much like that of an MZM driven to produce
the same modulation percentage, as pointed out by Halemane



BRIDGES AND SCHAFENER: DISTORTION IN LINEARIZED ELECTROOPTIC MODULATORS

Vae
A
Vi
INPUT l OUTPUT 1
R ol R o
_/??T\_.
1 OUTPUT 2

MODULATOR SECTION
LENGTH ©y0p RADIANS

TWO PASSIVE SECTIONS
LENGTHS ©,, ©5 RADIANS

Fig. 5. Linearized directional coupler modulator with a modulator section
followed by two biased passive sections. The angle 6 is shorthand for «l.

and Korotky [12]. However, there are subtle differences. For
example, biasing to the zero second-harmonic point does not
eliminate higher-order even harmonics. More interesting, a
zero in the third derivative curve, which is primarily responsi-
ble for both third harmonic and 2w;—wy IM D, occurs where
the signal is not zero, at about 0.7954 Vg. This is unlike the
MZM, where zeros in all odd derivatives occur at the same
value of Vg /2. We shall return to this point later.

Attempts to linearize the transfer function given in (1) by
adding elements to a basic DCM have been made by several
workers [3]-[5]. Farwell ef al. [4] have analyzed and built the
configuration illustrated in Fig. 5, a directional coupler that
has three sets of electrodes. The first set is used to apply the
modulation signal plus a dc bias voltage. The second and third
(passive) electrodes have only dc bias voltages applied. The
two ‘“‘extra” degrees of freedom introduced by these sections
are used to linearize the modulation transfer function.

Before treating the modulator with three electrodes, it is
instructive to look at a simpler modulator, namely a DCM with
only one extra set of bias electrodes as described by Lam and
Tangonan [3]. The reader may think of this as the modulator
of Fig. 5with Vy = Vg = Vp and p = 0,4 + QB[QA =
kla,0p = wlg and thus p = k(14 +1p)]. We can illustrate
the development of a “more linear” region by plotting the
transmission Ygg versus the voltage on the first section with
the normalized voltage on the second section Vp/Vs as a
parameter. The result is shown in Fig. 6 for the particular
case where both the modulator section and the biased sections
are eclectrically 7/2 radians long: that is, f3y = 6p = w/2.
The figures give the modulation transfer curves for —2 <
Var/Vs < 2, or a range of four transfer voltages. Thus, with
zero voltage applied to all sections the optical input on branch
1 is completely transferred to branch 2 in &, and then back to
branch 1in 6 4+68p. If Vi /Vs = 1 is applied to the modulator
section with Vp/Vg = 0, the transfer is complete from branch
1 to branch 2. With Vp /Vs = 0, we would bias the modulator
section to Vjs/Vs = 0.4394 to obtain the minimum second
harmonic output. We note that with Vp/Vg = 0.7 applied
to the second section, the region about the modulator bias
point V7 /Vg = 0.5 begins to look much more linear. As the
voltage is increased further, Vp /Vg = 0.8, this added linearity
disappears, and at Vp/Vgs = 1, the transfer curve is identical to
Vp/Vs = 0, but it is inverted. Further increase in the voltage
applied to the second section continues to change the shape of
the transfer curves but never yields such an improvement in
linearity over Vp/Vs =~ 0. At Vp/Vs = /5, the modulation
transfer curve is exactly the same as that at zero voltage, and
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Fig. 6. Evolution of the transfer function of a directional coupler modulator

with a passive bias section as the normalized voltage Vp /15 is increased
from 0 to 0.8. Note the “linearized™ region on the 0.7 curve.

very little change occurs above that voltage. In the limit of
very high voltage applied to the second section, A becomes
80 large that there is little coupling between the two guides,
and the second section effectively becomes two independent
guides (with equal and opposite phase shifts that still depend
on the applied voltage).

It is interesting to look at the shape of the derivatives of
the modulation transfer function as the bias on the second
section is varied. Fig. 7 repeats the transfer function from
0 < Vj/Vs < 1 and adds the first three derivatives with
Vp/Vs = 0. The first derivative produces most of the signal,
the second derivative produces most of the second harmonic,
and the third derivative produces most of the third harmonic
and the 2wi—wsy intermodulation (and a very small amount of
signal), etc. Clearly, biasing for a zero in the second derivative
will nearly maximize the third derivative, an undesirable
situation. What we really wish to do to is make the second and
third derivatives simultaneously zero, and this can be realized
if Vp/Vs is changed to 0.73193; the resulting transfer function
and its derivatives are shown in Fig. 8. This condition is near
the “0.7” curve in Fig. 6. By making the second derivative
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Fig. 7 The transfer curve and 1ts first three derivatives for a directional cou-
pler modulator of electrical length ;1 = 7/2 followed by an identical passive
section of length #p = /2, with normalized bias voltage Vp/1s = 0.0.
The proper bias for minimum second harmonic, V3;/Ve = 0.4394 is
shown by the arrow. the star indicates a possible bias that would make the
intermodulation distortion zero., but would result in a large second harmonic.

just touch the to zero line at its maximum, we make both
second and third derivatives zero simultaneously, assuring that
the second harmonic, third harmonic, and 2wi—ws outputs are
nearly minimized. There will be small remainders at these
frequencies produced by the nonzero higher derivatives, which
may be canceled by a slight adjustment of the second bias
voltage away from 0.73193 Vg at a single value of modulation
drive voltage. just as in the dual MZM previously discussed.

We can apply this same strategy to the three section modu-
lator shown in Fig. 5 in order to find optimum values of V
and Vp. Fig. 9 shows the transfer function and its first three
derivatives for the particular case that 0y;0p = 7/2,604 =
O = n/4,V./Vs = 0.73805 and Vg /Vs = 0.77002. For
these values (found by trial and error). second, third, and fourth
derivatives are all zero at a modulator bias of Vj;/Vs = 0.509.
Thus, the fourth harmonic will be greatly reduced, the second
harmonic will be reduced somewhat from the case of the two-
section modulator, and the third harmonic and the 2wi—wy
intermodulation will be of the same order.

It is tempting to speculate that adding further biased sections
will add still more degrees of freedom that could be used
to set additional derivatives to zero and improve the 2wq—ws
intermodulation. In a study by Sheehy [19] it appears that the
fifth derivative may be set to zero, not by adding an additional
section, but by moving the second biased section to precede
the modulator, and adding phase-shifting lengths between the
modulator section and the biased sections. Sheehy also shows
that adding further biased electrodes or phase shift sections to
the DCM can do no better than this.
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Fig. 8. Same modulator as Fig. 7, but biased to Vp/Vs = 0.73193 to
simultaneously zero the second and third derivatives.
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Fig. 9. Transfer function and first three derivatives for the directional coupler
modulator of length 657 = #/2 followed by two passive sections of lengths
A4 = w/4.8p = x/4 as shown in Fig. 5. The biases V)4 and V'3 shown
were found by trial and error to the maximum dynamic range. The optimum
modulator bias 18 Vir/Vs = 0.509.

y

IV. LINK MODEL

We now introduce a model for a complete optical link illus-
trated in Fig. 10, containing a laser source with power Py, [W],
and a relative intensity noise RIN [dB/Hz]. The laser feeds a
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Fig. 10. Schematic of the model that was used 1n the analysis of high fidelity
fiber-optic links. The pre- and post-amplifiers were omitted for most of the
calculations.

traveling-wave modulator, which we will describe in terms of
its transfer function and its characteristic impedance Rz [£2].
The transfer function will contain a sensitivity characterized
by V. in the case of MZM’s or Vg in the case of DCM’s,
along with bias voltages, optical splits, and other parameters
as necessary. The modulator output is attenuated by some loss
L, [dB], which is the total optical loss in the modulator,
the optical fiber, and optical connections (Las + Lr). The
optical detector is characterized by its responsivity 1 [A/W]
and its terminating load Rp [©2] (which would also be the
input impedance of a post amplifier if one were used). The
system noise bandwidth is BW [Hz].

The modulator is driven by an RF power P, [dBm],
which consists of two equal amplitude sinusoidal modulations
at frequencies 1.0 and 0.9 Hz. This modulation is applied
to the transfer function to calculate the output signal. The
Fourier components at 1, 2; and 1.1 Hz, corresponding to
signal, second harmonic, and intermodulation at 2w;—wy, are
calculated by direct numerical integration over the complete
period for this signal: 1.0/(1.0—0.9) =10 sec. (The other inter-
modulation product 2ws —w1 at 0.8 Hz has the same amplitude
as that at 1.1 Hz.) We found direct calculation to be much
more satisfactory than taking a numerical FFT, since we are
only interested in certain frequency components rather than a
complete spectrum; calculating only these components allowed
us to program the link model in the user-friendly language
MathCAD® on personal computers (486 and Macintosh II).
Further details of the calculations are given in the Appendix.

The calculations were made for a consistent set of physical
parameters representative (cxcept for the bandwidth) of a
typical short fiber-optic link used at microwave modulation
frequencies; these are given in Table 1. Of the first eight
parameters listed in the table, three always occur in the
model as the product H = PrL,np, which is simply the
photodetector current when the modulator transmission is
unity; this product is 7 mA for the values given in the table,
and any other values that give the same product will yield the
same results. The output Fourier components were calculated
for input signal levels from —160 dBm to 440 dBm. The
noise level was calculated over this same range and includes
laser RIN, shot noise due to the photodiode direct current
(assumed to be completely signal-generated; dark current was
assumed to be zero), and thermal noise in the input source
and output terminating resistors.

The loss L, was taken to be 10 dB, a reasonable value for

the fiber, connector, and excess modulator loss (at zero bias)
in a short link. For long links, L, will be greater, and an
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additional noise term accounting for Rayleigh scattering noise
should be added.

In addition to plots of the signal, noise, harmonics, and
intermodulation as functions of input power, the dynamic
range was found by solving numerically for the input RF drive
level at which the intermodulation curve intersects the noise
level using MathCAD®’s root finding routine. The dynamic
range was calculated as the difference (in dB) between the
intermodulation and the signal at this power level. Since the
intermodulation curve crossed the noise level multiple times in
some cases, the initial guess for the root finding routine was
always set to low RF drive levels. The link model program
was used in a trial-and-error fashion to adjust the various
biases, splits, etc. on the linearized modulators to maximize
the dynamic range. The maximum dynamic tange as we
have defined it above occurs when a subsidiary maximum
in intermodulation just “kisses” the noise level, as shown
in Fig. 3. Unfortunately, this is just the kind of intersection
for which a root-finding routine will have trouble converging.
When the root finder failed to converge, a highly magnified
plot of the subsidiary maximum and the noise level was
generated to decide if the curves kissed or crossed.

The small-signal gain and noise figure were calculated
numerically by evaluating the signal at a very small input
value, selected typically as F,,, = —100 dBm. Since the
intrinsic links contain no electronic amplification, their *‘gains”
were actually losses of several tens of dB and their noise
figures were also several tens of dB. Both gain and noise
figure is improved by using higher laser power or developing
a more sensitive modulator, but it is doubtful that either could
be improved sufficiently at microwave frequencies to realize
the greater-than-unity gain and good noise figure reported by
Cox er al. [14] for low frequency modulators with passive
impedance transformations. In almost all applications, elec-
tronic amplification would have to be added to a microwave
link, and this will introduce an additional source of noise and
distortion as discussed later.

V. LINK PERFORMANCE RESULTS:
MACH-ZEHNDER MODULATORS

For reference we consider first a simple MZM biased
properly at 0.5Vs to eliminate all even harmonics.” Fig. 11
shows the results with the parameters given in Table I. The
dynamic range is 109.9 dB for a 1 Hz bandwidth, the gain is
—25.2 dB, and the noise figure is 38.0 dB. Since the slope of
the intermodulation is closely 3 in the log-log plot, it would
be easy to define a third order intercept of 3 dBm (output)
or 28.2 dBm (input) for this modulator, and use that value to
calculate the dynamic range DY for any other noise level as

DY = %— (D[A[ — P,w - B) (dBm) (3)

where Dy, is the third-order intercept point in dBm, P,,, is
the noise power in dBm, and B is the bandwidth in (dB)/Hz.
The third harmonic is about 9.5 dB below the intermodulation
for most of the range.

The results for the dual MZM with the optimum RF drive
voltage split of 2.62 : 1 and the “inverse cube” optical split of



2190

0 T T T T

€

m

S a0

=

u

z

Z

<

F 0

o

ut

Q.

&

z -120

o

Q.

[

=

E 160 b o —

3 NOISE FLOOR

-200 - i 1 L I
-160 -120 -80 -40 0 40

INPUT POWER PER CHANNEL (dBm)

Fig. 11. Signal, intermodulation, and noise for a photonic link (Table I
parameters) using a simple Mach—Zehnder modulator biased at V35 = Vx /2.
The resulting dynamic range is 109.9 dB. The curve labeled “2H" is the
component at the second harmonic frequency due to the high-order odd
intermodulation products coincidentally at that frequency, since all even order
products are 1dentically zero. This curve does depend on the numerical choice
of frequencies used.

1: 17.9847 were already presented in Fig. 2 for the condition
that cancels the cubic term in the intermodulation and results
in a simple slope 5 curve. The resulting dynamic range is
126.2 dB for a 1 Hz bandwidth, the gain is —36.0 dB, and
the noise figure is 48.8 dB. The gain is lower than the single
MZM because there is a partial cancellation of the signal in
the process of canceling the intermodulation. And, since the
noise level is similar (the noise was split in an uncorrelated
fashion between the two detectors) the noise figure is also
degraded. (Note also that if the two-polarization scheme were
used the detector shot noise would have to be treated slightly
differently.)

If either the optical splitting ratio or the RF splitting ratio
is adjusted to be slightly off the exact inverse-cube relation,
then a small improvement in dynamic range is obtained. Fig. 3
shows the result of making the RF split 2.62 : 1, but the optical
split 1 : 17.9136 versus 1 : 17.9847 for the “inverse cubic”
relationship, determined by trial and error to produce the
maximum dynamic range of 129.7 dB, a 3.5 dB improvement,
with a resulting link gain and a noise figure essentially the
same. The dynamic range depends very critically on the RF
and optical splitting ratios. Fig. 12 shows the sensitivity of
dynamic range to a change in the optical power splitting ratio
O : Oy (expressed as the difference O1-O; cupicy when
the RF voltage is the “inverse cubic” optimum split 2.62 : 1.
The sensitivity to change of the RF power ratio W; : W;
for the “inverse cubic” optimum optical ratio (expressed as
W,-W; cupre) is very similar to Fig. 12. We see that we
can gain an improvement in dynamic range above the simple
inverse-cubic relation for these splits. But the improvement
only comes with very close control of these ratios, a control
that likely could be achieved only with active feedback driven
by the intermodulation distortion or harmonics from a pilot
tone, for example. In fact, to obtain any improvement over a
single MZM, not just the “extra” 3.5 dB, active control will
likely be necessary.
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fraction of optical power fed to modulator 1 for a dual Mach~Zehnder
linearization scheme. System noise bandwidth is the parameter from 1 Hz-1
GHz.

The situation is not quite as grim as Fig. 12 implies when
we use more realistic values of system noise bandwidth. The
intersection of the intermodulation curve with the noise level
determines the dynamic range, so that an increased noise level
will change the parameters that yield the maximum dynamic
range and also the sensitivity to deviations in the parameters.
Fig. 12 was calculated for a 1 Hz bandwidth. Fig. 13 shows
the change in dynamic range from its maximum value as a
function of the optical fraction used in modulator 1 (the same
abscissa as Fig. 12, but shifted by O; cupic) with system
noise bandwidth as a parameter from 1 Hz to 1 GHz. If
we measure the “tolerance” to deviations as the width of
these curves at some dynamic range degradation, say —3 dB,
then we find the tolerance varies roughly as (BW)Y/5. A
perturbation analysis by Hayes [20] that neglects the higher
order terms in the intermodulation also predicts a fifth-root
variation. Even for 1 GHz bandwidth, Fig. 13 indicates 1%
control will be required on O, to stay within £1 dB of a high
dynamic range. It is also true that the higher the noise level,
the smaller the improvement that can be gained by using a
linearized modulator—that is. the ratio of dynamic ranges of
the dual MZ to the single MZ. Hayes' perturbation analysis
predicts this ratio varies as (BW)~2/1%,

As in the simple MZM, the true second harmonic is iden-
tically zero in the dual MZ because of the symmeiry of
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Fig. 14. Output RF signal power and third-order intermodulation power as
a function of the input signal power for a fiber-optic link using parameters of
Table I and a simple directional coupler modulator. The “standard” bias point
of 0.4394Vs was used. In this case the 2H curve arises form all orders of
nonlinearity, including even terms.

the sine-squared transfer function. However, the behavior of
the third harmonic in the dual MZM is somewhat more
complicated than in the simple MZM. If plotted in Fig. 3,
the third harmonic curve would lie below the IMD curve for
most of the region to the right of the null in IMD, although by
less than the — 9.5 dB of the simple MZM. For the operating
conditions of Fig. 3, a null occurs just to the left of the IMD
null, so that the third harmonic is actually greater than the IMD
in a very small range of input powers near the value where
both third harmonic and IMD enter the noise level. Thus, if
third harmonic components fall within the frequency range of
interest, the “dynamic range” should be defined by the third
harmonic intersection with the noise, rather than the IMD.

It may have occurred to the reader that one might use three
identical MZM’s and attempt to cancel the 5" order term
in the J;(0)Jy(6) Bessel expansion as well as the 3" order
term. This can also be done. The optimum splits for “cubic-
quintic” cancellation, analogous to the “cubic” condition for
the dual MZM are, for RF power, W7 : Wy : W3 = 0.0394 :
0.3136 : 0.6470 and for optical power, O; : Oy : O3 =
0.914480 : 0.074218 : 0.011302. Using these RF and optical
splits, the intermodulation at 2w;—ws exhibits a smooth slope
7 dependence on the input power. The resulting dynamic
range, for the link parameters in Table I, is 132.96 dB, with a
small-signal gain of —41.7 dB and a noise figure of 54.6 dB.
The “second harmonic” at 2w: (resulting from coincidental
differences between high odd-order terms) is about 2 dB below
the 2w;—w9 intermodulation.

Also analogous to the DMZ, a slightly better dynamic
range may be obtained by operating a little off the exact
“cubic-quintic” condition, for example, with the same ratio
of Wi : Wy : W3 but with Op : Oy : Oz = 0.914484
0.074218 : 0.011298, we obtain a dynamic range of 134.85
dB. The gain and noise figure are unchanged. The sensitivity
of the splits are similar to those shown in Fig. 12. The three
MZM scheme is likely only of academic interest; the dual
MZM is hard enough to realize in practice!
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Fig. 15. Output RF signal power, third-order intermodulation power, and
second harmonic power as a function of the input signal power for a fiber-optic
link (Table I parameters) with a simple directional coupler modulator. The bias
point was set to 0.7955071’s for maximum dynamic range. The large second
harmonic arises from the large quadratic curvature of the transfer function at
this bias point.

We conclude that by using a dual MZM and the link
parameters given in Table I we can obtain about 20 dB of
improvement in dynamic range at a sacrifice of about 10 dB
in gain and 10 dB in noise figure, and at a cost of controlling
the modulator parameters precisely.

VI. LINK PERFORMANCE RESULTS:
DIRECTIONAL COUPLER MODULATORS

We now apply the link model calculations to DCM’s.
Fig. 14 shows the calculated signal, second harmonic, and
intermodulation for a simple DCM with the parameters given
in Table 1. The length of the modulator is chosen to give
complete crossover at zero bias. Since there is no bias point
that eliminates all even harmonics simultaneously as in the
MZM. we have to choose a compromise bias point. For
Fig. 14. we have chosen the bias point that minimizes the
second harmonic, very near the point that makes the second
derivative of the transfer function zero. The residual second
harmonic then arises from the nonzero higher even derivatives
and shows up as a curve of slope about 4. The signal,
odd harmonics, and 2wi—ws intermodulation are relatively
insensitive to the exact choice of bias in this range. The third
harmonic is about 9.5 dB below the intermodulation, exactly
like the MZM. For this link the dynamic range is 109.4'dB,
the gain is —24.8 dB and the noise figure is 38.0 dB, very
close to those values for the simple MZM.

We noted previously (in the caption to Fig. 7) that there is
another interesting bias possibility in the simple DCM, at about
0.8Vg. At this bias the third derivative is zero but the signal is
not (the “star” in Fig. 7). And, of course, the second derivative
is near its maximum value. Fig. 15 shows the resulting signal,
second harmonic and IMD for a bias of 0.795507Vs, which
maximizes the dynamic range to 135.4 dB. The gain is —31.9
dB and the noise figure is 36.7 dB. The second harmonic would
likely be unacceptably large for this link if it fell within the
desired pass band—71 dB below the signal where the second
harmonic equals the noise level. This bias point may be of
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interest for narrow band links where only the IMD falls within
the passband.

Next, we consider the DCM followed by a single set of
electrodes of the same length as the modulator as described
by Lam and Tangonan [3]. Both lengths are chosen to produce
complete crossover at zero bias, the same as those used in
Figs. 7 and 8. Adjusting both the modulator bias voltage and
the passive section voltage by trial and error to maximize
the dynamic range produced the signal, second harmonic, and
intermodulation curves shown in Fig. 16. The optimum biases
were 0.333719Vs for the modulator and 0.73152Vs for the
dc-biased section when operated in the “cross” state, i.e., the
laser input on the R-guide and output on the S-guide. For
these values, the dynamic range was 127.05 dB, the gain was
—31.7 dB, the noise figure was 45.9 dB, and the average light
transmission was 64%. It is interesting to consider the output
characteristic of the “bar” state, i.e., laser input on the R-guide
and output on the R-guide. The average light transmission on
the R-guide is 36%, which results in lower shot noise. If the
same bias settings are used, however, the signal and IMD
will be exactly the same on this arm, which means that the
IMD *“sidelobe” will now protrude above the noise and yield
an inferior dynamic range (about 124 dB) compared to the
cross arm. However, if a very slight adjustment to the bias
is made, e.g.. changing Vp/Vg to 0.731552 from 0.731520,
then the IMD sidelobe falls below the noise and the dynamic
range increases to 129.5 dB, the noise figure falls to 42.9
dB, but the gain remains exactly the same. This would be the
preferred mode of operation and suggests a general theorem:
If the signal and IMD are the same, then the lower the average
light transmission the better will be the link dynamic range and
noise figure. This theorem is also illustrated by comparing the
simple DCM biased at its maximum dynamic range (Fig. 15).
The noise figure of the simple DCM is actually better by
6-9 dB. and the dynamic range is about 5-8 dB better than
the DCM plus one bias section. This results from a still
lower average light transmission of the simple DCM at the
0.79Vs bias point, about 7% compared to 64 or 36% for the
DCM plus secondary section at its optimum bias. The largest
contribution to the noise in all three situations is signal shot
noise, so minimizing the average light transmission actually
helps the noise-dependent link parameters. (Such a strategy
was proposed and demonstrated for a simple Mach-Zehnder
modulator by Ackerman er al. [21] to increase dynamic range
and noise figure by biasing near extinction. Of course, a very
large second harmonic results there, t00.)

The signal at 2w; in the DCM plus one dc¢ section from
all intermodulation and harmonic terms is greatly improved
from the simple DCM biased for maximum dynamic range,
Fig. 15, but not as small as that in the simple DCM at its
usual bias point, Fig. 14. The second harmonic curve for this
modulator could undoubtedly be improved still further if a
better “optimization” algorithm had been employed for the
second harmonic, as described in the Appendix. Instead, only
the value of the second harmonic at the specific input power
that made the IMD equal to the noise was used as a measure.
While that measure is very low (more than 130 dB below the
signal), the satellite “bump” in 2H at lower inputs was missed.
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Fig. 16. Output RF signal power, third-order intermodulation power. and
second harmonic power as a function of input signal power for a fiber-optic
link using the parameters of Table I and a directional coupler modulator
with a modulation section of length 857 = w/2 followed by a dc bias
section of length #p = #/2. The bias values Vi; = 0.340Vs and Vp =
0.732417V’s were determined by trial and error to maximize the dynamic
range and minimize the second harmonic at the specific input where the IMD
equaled the noise level. The second harmonic could be improved with a better
optimization algorithm; see the Appendix.

Thus a broadband (greater than an octave) dynamic range
for this modulator would be 105 dB, limited by the second
harmonic. By relocating the null in the second harmonic using
the dynamic range algorithm described in the Appendix we
believe the broadband dynamic range could be increased to
127 dB.

Finally, consider the DCM followed by two sets of elec-
trodes, as shown in Fig. 5 and studied by Farwell et al. [4].
The modulator is one transfer length long at zero bias as above.
but the two dc-biased sections are each half that length. Thus,
if the biases applied to the two sections were forced to be
equal, this modulator reduces exactly to the previous case.
However, allowing the two regions to be biased separately
allows a substantially larger linear range, as shown in Fig. 9.
Starting with the values scaled from Fig. 9, V3,, V4, and Vg
were varied by trial-and-error to find the maximum dynamic
range and a second harmonic that was everywhere less than
the 2wi—w, IMD. The results for the optimum values are
shown in Fig. 17. For this graph, the optimum values were
0.509Vs modulator bias, 0.738045Vs second section bias. and
0.770017Vs third section bias. For these values. the dynamic
range is 129.4 dB, the gain is —30.5 dB, and the noise figure
is 43.3 dB, compared to the best DMZ values of 129.7 dB,
~36.0 dB, and 48.8 dB, respectively. Again, the slightly poorer
dynamic range and noise figure compared to the simple DCM
at 0.79Vg bias (Fig. 15) result from the much higher average
light transmission (49.8%) and resulting higher shot noise.
Since the light transmission is so close to 50%, both “cross”
and “bar” state operation will be the same.

The second harmonic lies significantly below the IMD, and
exhibits two nulls, as shown in Fig. 17. The third harmonic
curve (not shown) lies below the IMD curve by about 5 dB
over almost the entire range to the right of the IMD null, but
remains slightly above the noise level at the IMD null, since
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Fig. 17. Output signal, intermodulation and second harmonic for a direc-
tional coupler modulator with two passive bias sections each one-half the
length of the modulator. Bias points of 137 = 0.509V75, V73 = 0.7380451 s,
and V5 = 0.770017Vs were found to be optimum by trial and error.
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Fig. 18. Dynamic range (left scale) and signal-to-second harmonic ratio at
the input power where the 2wj-wsy intermodulation intersects the noise level
(right scale) as a function of modulator bias point for a photonic link with
parameters given in Table I and a linearized directional coupler modulator
with two passive bias sections at V4 = 0.770017Vs.

the third harmonic null lies just to the left of the IMD null.
This is similar to the situation for the dual MZM.

It is important to consider the sensitivity of the above
results to the errors in the three bias settings, analogous to
errors in optical and RF power splits for the dual MZM.
Fig. 18 shows the sensitivity of the IMD and a measure of
the second harmonic (see Appendix for definition) and IMD
to the modulator bias setting; not surprisingly, the results are
relatively insensitive to this bias, since what we have set out to
do is make a linear curve for the modulator transfer function.
Errors of a few percent in setting the modulator section bias
would not change the modulator performance significantly. By
contrast, Fig. 19 shows the sensitivity of the second harmonic
and IMD to variation in the second section bias. Here, changes
of 40.01% would reduce the dynamic range by 5 dB. Of
course, Fig. 19 is for a 1 Hz bandwidth, and we expect a
similar decrease in sensitivity by BW/5. Thus we would
expect +£0.16% for 1 MHz and +0.6% for 1 GHz bandwidths,
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Fig. 19. Dynamic range (left scale) and second harmonic (right scale) as a
function of first section bias voltage 14 with V7 at 0.50915 and Vg =
0.770017V's.
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loci in the V4 — Vg plane for an applied pilot tone of —4 dBm.

although we have not made the calculations. The variation with
third section bias voltage Vg /Vyg is very similar to Fig. 19.
Fig. 20 plots the position of the “cliff” or discontinuity in
dynamic range as a function of the two biases. Pairs of biases
along the “cliff” line will all produce dynamic ranges of the
order of 129.4 dB, while east-west motion will produce the
curve of Fig. 19. Also shown in this figure are the loci of biases
that will produce a null in second and third harmonics for an
applied pilot tone power of —4 dBm. At the intersection of the
second and third harmonic null loci (open circle), the dynamic
range is 129.0 dB, only 0.4 dB less than the optimum value
of the edge of the “cliff.” Thus only a little dynamic range
would be lost in an active bias stabilization scheme based
on nulling the second and third harmonics of a pilot tone, as
suggested by Hayes [15]. The pilot tone amplitude also needs
to be stabilized since the third harmonic curve moves relative
to the “cliff”” as the amplitude varies. A pilot tone of —6 dBm
moves the third harmonic null curve farther to the right, thus
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selecting an operating point still in the “highlands,” but with a
smaller dynamic range; a pilot tone of 0 dBm moves the third
harmonic null curve to the left, into the “lowlands,” selecting
an operating point with several dB smaller dynamic range.
Of course, this stability requirement should be relaxed with
system noise bandwidths greater than 1 Hz.

VII. LINK PERFORMANCE WITH A PREAMPLIFIER

We have addressed tne effects of electronic amplifiers on
optical link performance in a previous paper [9], an extension
of still older work for cascaded electronic amplifiers [16].
Clearly, the intrinsic optical links (i.e., without electronic pre-
or post-amplification) described above will require the addition
of electronic amplifiers to produce acceptable overall link
gain and noise figure. And the distortions produced in such
amplifiers will add to those produced in the modulator. We
also modified our numerical programs to include preamplifiers
with given small-signal gain, noise figure, third-order intercept
(TOI), and second-order intercept (SOI). Gain saturation in
the preamplifier is ignored. The IMD and 2H outputs of the
preamplifier are calculated and then passed through the mod-
ulator using the numerically calculated slope of the transfer
curve. The preamplifier distortion and modulator distortion are
added in quadrature at the photodetector, since they arise from
physically independent sources and are thus uncorrelated.

We can illustrate the effect of adding a preamplifier to a
linearized DCM, one with two added bias sections as described
in Figs. 17-20. We chose a range of preamplifier parameters
that encompass those of the best obtainable microwave ampli-
fiers, but also include values that are better than realizable
at the present. Fig. 21 shows how the dynamic range and
noise figure of the intrinsic link are changed as a function
of preamplifier gain from 0-50 dB. The preamplifier noise
figure is 3 dB and its third-order intercept varies from 40
dBm (off-the-shelf item) to 60 dBm. As expected from the
Friis formula [17], for amplifier gains of the order of the link
loss, the overall noise figure approaches the preamplifier noise
figure. The link dynamic range, however, depends little on the
preamplifier gain up to 30-40 dB, but depends critically on the
TOI of the preamplifier. A preamplifier TOI greater than 60
dBm would be required to keep the link dynamic range from
degrading by 3 dB. At gains in the 40-50 dB range, further
degradation in dynamic range takes place as the modulator
begins to contribute to the distortion. The conclusion here, as
it was in [9], is that it makes no sense to use a highly linearized
modulator unless the driving preamplifier has a high TOIL.

Similarly, distortion introduced by the nonideal behavior of
the optical detector could be included in the overall link behav-
ior. The high optical powers encountered in short microwave
links likely will produce such nonideal behavior. Both the
very small area photodetectors that are required for microwave
output and the dependence of the link gain and noise figure
on the laser power yield designs with high optical power
densities on the photodetector. Hayes and Persechini [18]
have measured the distortion produced in typical microwave
photodetectors, and it is significant enough that degrades the
link dynamic range even further.
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VIII. CONCLUSION

We have developed a simple link model that calculates har-
monic and intermodulation distortion by Fourier-analyzing the
link output when a two-tone input signal is applied. We have
applied the model to selected linearized modulator schemes,
particularly the dual and triple Mach—-Zehnder, and directional
coupler modulators with zero, one or two additional dc-biased
regions to enhance linearity. We find that the harmonics and
intermodulation produced no longer exhibit a simple constant-
exponent power law behavior with the input signal, and we
propose a new, unambiguous definition of dynamic range
to cope with this added complexity. For a sample set of
parameters, we calculate that improvements of about 20 dB
in dynamic range are obtainable. at a sacrifice of 10 dB in
gain and noise figure, but that the modulator parameters must
be tightly controlled to realize such an improvement. Table 11
summarizes the link performances for a 1 Hz noise bandwidth.
We also demonstrate that the addition of low noise electronic
amplifiers with even the best obtainable third-order intercepts
will significantly degrade the dynamic range.

APPENDIX

A. Link Model Calculations

The MathCAD® program inputs the link parameters listed
in Table I plus the parameters that enter into the particular
modulator transfer function Y(V'), described later in this
appendix. The transfer function gives the fractional optical
transmission through the modulator when a normalized voltage
V/Vs or V/V,) is applied (Vs is the DCM transfer voltage and
V5 is the MZM half-wave voltage). The independent variable
used in the link model is the input power P;, (dBm). This
value in dBm is converted to power in Watts, Sm(Pm).

The normalized voltage applied to the modulator is then
given by

Var

= 7
Vim

2RJ\J Szn (Pzn)

V(t, Pu) v

2 (A
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TABLE 1I
PERFORMANCE OF FIBER-OPTIC LINKS WITH PARAMETERS OF TABLE 1

Modulator Type Dynamic Range Gain Noise Figure
(dB in 1 Hz) (dB) (dB)
Simple MZM 109.9 -25.2 38.0
Dual MZM ("cubic") 126.2 -36.0 48.8
Dual MZM (optimum) 129.7 -36.0 48.8
Triple MZM ("cubic-quintic”) 132.96 -41.7 54.6
Triple MZM (optimum) 134.85 -41.7 54.6
Simpie DCM (normal bias) 109.4 -24.8 38.0
Simple DCM (max DY bias) 135.4* -319 36.7
DCM+0p (cross) 127.05 -31.7 45.9
DCM+8p (bar) 129.47 -31.7 42.9
DCM+0,+6p 1294 -30.5 43.3

*Dynamic range based on second harmonic only is 82 dB (in 1 HZ)

where V), is the bias voltage, Rj; is the modulator char-
acteristic impedance, and x(t) is the (dimensionless) applied
two-tone signal at frequencies o and b

z(t) = sin (2wat) + sin (27ht). (A-2)
In all calculations ¢ and b are taken as 1 and 0.9 Hgz,
respectively, so the intermodulation products 2a—b and 2b—a
occur at 1.1 and 0.8 Hz, respectively. We calculate only the
former. Second and third harmonics are taken as 2a = 2 Hz
and 30 = 3 Hz. The results are, of course, independent of the
absolute frequency value except for the chance coincidence
in high order intermodulation products that happen to fall at
critical frequencies, e.g., 11a — 10b = 2 Hz.

The waveform as distorted by the modulator transmission
function Y (V') is then obtained from Y[V (¢, P;,,)]. To avoid
“saturating” the Fourier transform integrals numerically, the dc
component of transmission, Y [Var/Vs, »|. is subtracted from
Y to yield the time-varying component Y (£, P,.).

The Fourier components of this RF waveform are then
calculated directly using MathCAD®’s numerical integration
routine. The integrands are scaled inversely with the input
voltage by multiplying by [S.,(P.,)] /2, again, to keep the
integrands from becoming too small and suffering from round-
off errors. In some cases additional fixed scaling factors were
used over different ranges of F,, to speed computation time
in evaluating these integrals®

In addition, it is necessary to calculate both in-phase and
quadrature components of each quantity to account for possible
phase shifts introduced by the transfer function. Thus, the

31t would likely be better to use different scale factors for IMD and second
harmonic, say 5;3/ 2 for IMD and S;ll for second harmonic. However. in
the linearized modulators, the dependence on input power is not so simple, and
it was not immediately obvious how to choose the proper integrand scaling
in advance.

signal component is given by

SIG(Pin) = [Sin(Pin)]?

2
. f/(t, P;,) sin (2wat) dt}

T
[Sin (Pm )] -1/

Ml

0

2

T

T
/0 [Sun(Po)] V2

2y 1/2
- Y(t, P,) cos(2rat) dt] } . (A

The integrals are taken over an exact period 7' of the input
waveform, T = 1/(b — a) = 10 sec. for ¢ = 1 Hz and
b = 0.9 Hz. The third-order intermodulation IMD(P;,) is
calculated in the same fashion by substituting 2¢ — b for @ in
equation (A-5), and the second and third harmonic 2H(P,,)
and 3H(P,,) by substituting (2a) and (3a), respectively.
These quantities are actually the Fourier components of the
time-varying modulator transmission. They are converted to
detector current by multiplying by the unity transmission
detector current H = Pr L,np, where Py, is the laser power in ‘
Watts, L, is the total optical insertion loss ratio from the laser
to the detector, and 7p is the detector responsivity (A/W).
Signal, intermodulation, and harmonics are further converted
to average RF powers in dBm at the output resistor Rp of the
intrinsic link: PSIG dBm (P;,), PIMD dBm (P;,), P2H
dBm (P,,), and P3H dBm (P,,).

The small signal gain of the link, G, is obtained by
evaluating the output at a very small value of input power,
P, = — 100 dBm. For the intrinsic link, G is typically
much less than unity, say 1073~10~%. The noise output power
[W/Hz~1] in Rp is given by

N =GkT + RIN - I3-Rp +2elpcRp + kT (A-4)



2196

where RIN is the relative intensity noise of the laser (ex-
pressed as a ratio), and Ipc is the average photocurrent
H - Y|V3;/Vs, w]. Note that both the thermal noise GET
from the modulator driving source (assumed to be matched to
Rjp) and kT from the detector terminating resistor Rp are
included even though the former is negligible compared to the
latter for typical G's less than unity. The noise figure is then
F dBm = N dBm —[GkTapm. If a post amplifier is added,
the T from Rp should be deleted before calculating the link
noise figure so that it may be correctly cascaded with the post
amplifier via the Friis formula [18].

The link dynamic range is calculated by first finding .X,,,
the particular value of input power P, that makes the inter-
modulation equal to the noise. MathCAD®’s rootfinder is used
to solve the equation PIM dBm (P,,) — N dBm = 0 for the
root X,,,. The dynamic range in dB is then DY = PSIG dBm
(X,,)—N dBm. When MathCAD®’s root-finding program has
difficulty converging, which usually happens when the solution
is near the “kissing” point of a subsidiary maximum with the
noise level, then a program that plots both intermodulation and
noise is used to find the desired solution by successive trials.

A measure of the signal-to-second harmonic ratio, DY 2, is
found by evaluating this ratio at X;,; DY2 = PSIG dBm
(X,n) — P2H dBm (X,,). Depending on the complexity of
the PIM dBm and P2H dBm curves, DY2 can be used
to estimate whether the second harmonic is significant or not
compared to the IMD. But note that the measure DY 2 is not a
true dynamic range for the second harmonic. Such a true value
would be found by solving the equation P2H dBm (P,,)— N
dBm = 0 for the lowest-valued root in input power, X2;,,
and then evaluating True DY2 = PSIG dBm (X2,,) — P2H
dBm (X2;,). The true broadband dynamic range would then
be determined by the smaller of DY and True DY 2 (assuming
that the third harmonic is always less than IMD). We did not
use this procedure in optimizing the modulator parameters,
and Fig. 16 is an unfortunate less-than-optimum result as a
consequence of looking only at DY'2 and not True DY 2.

B. Transfer Functions

For the Mach—Zehnder modulator, the transfer function is

simply
sin { —
2

where V is the voltage normalized to V., as in (A-2).

For the dual MZM, the additional parameters required are
the lossless RF power splitting ratio F' : (1 — F'), the lossless
optical power splitting ratio f : (1— f), and the two modulator
bias voltages Va; and 2V, (denoting the two modulators by
pre-superscript “I”" and “2”). The RF and optical powers fed
to the two modulators are thus

Y(V)= (A-5)

'S (Pin) = FSin(Pin) (A-6)
QSin(Pm) = (1 - F)Szn(Pm) (A'7)
'H=fH (A-8)
H=(1-f)H. (A-9)
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The transfer function is thus

1
Y(V) = f sin® {W *gﬁ +VF . V2RrtSin(Fin) }
+ (1= f) sin? {7r Y, 1—F)
QRA[SLTL(PLTL)
T} } (A-10)

To obtain cancellation of intermodulation and odd harmonics,
the two modulators must be biased to opposite slopes. In all
calculations, we took Vs / Ve = 1/2 and 2V [V, = —1/2.
The simple directional coupler modulator is usually defined
by its physical length [, coupling coefficient x, and the
difference in the propagation coefficients of the two arms, AS.
We chose to express these as the coupling angle 6y, = «l
and the transfer voltage Vg, that is, the voltage applied to the
electrodes that causes the full output to switch from one arm
to the other arm when 057 is nn/2 (n an integer). Thus a
DCM with 03, = 7/2 and an optical input into arm R only
would have an optical output only from arm S at zero applied
voltage, and output only from arm R with Vg applied. The
transfer function for arm R to arm S is then
. [sin (ezy[ -1+ 3V2)]2
B 1+43V2
where V is the applied voltage normalized to Vg. We have
assumed the two arms are identical, so that A5 = 0 with zero
applied voltage; the formula is easily modified to include a
static AS. The transfer function from input to output in arm
Ris Yrr(V) =1—Yps(V) and Ysr = Yrs, Y55 = Yri.
The transfer function for the DCM with additional sets of
electrodes is somewhat more complicated to define. We must
work with optical amplitudes rather than powers, since we
must keep track of the modulation phase as the signals pass
from section to section. It is convenient to consider the transfer
matrix from input arms R and S to output arms R and S
M= ( Mgr —j]\fRs)
—JMsg M;g
Note that there are only two independent elements
Mgrr =Mss

= cos [HM V14 3V2]

L V3V sin [ar V1 + 3V
! VI 3v?

Mps = Mspg
sin [HA[\/ 1+ 3V2]
Vi+3vz o
We note that Ypg(V') is simply MrgM},o in (A-28).
If additional passive sections of length 8 4 and 65 are added,
with normalized bias voltage V4 and Vg, then they can be
described by additional matrices A, B with elements 4,;, B;,.
obtained by appropriate substitutions in (A-30)-(A-32). The
overall amplitude transmission matrix 7" may be obtained by
matrix multiplication, T"= BAM. with elements 7);. The

Yrs(V)

(A-11)

(A- 12)

(A-13)

and

(A-14)
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-crossover amplitude is found to be
Trs(V) =—j{Brs[ArrMrr(V) — ArsMps(V)]
+ BrrlARrsMrr(V) + AgpMps(V)]} (A-15)

and the desired optical intensity transfer functions is then
Yrs(V) = Trs(V)T}s(V). If only one passive section is
used, set V4 = Vg = Vp and 04 = 0 = 0p/2. And, of
course, the simple DCM is obtained with 4 = 0 = 0, albeit
" with a longer-running program.
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